
OPTIMAL CONTROL OF D. A. WISMER, Jr. 

DISTRIBUTED PARAMETER SYSTEMS 
USING MULTILEVEL TECHNIQUES April 1967 

Report No. 66-55C 

GPO PRICE 

CFSTI PRICE(S) $ 

Microfiche (MF) 

ff 853 July 85 



Report No. 66-55C 
April  1967 

OPTIMAL CONTROL O F  DISTRIBUTED PARAMETER SYSTEMS 
USING MULTILEVEL TECHNIQUES 

David Arthur Wismer,  Jr. 

Department of Engineering 
University of California 

Los Angeles ,  California 



. 
FOR E WO IiD 

I t  The r e sea rch  described in this report ,  Optimal Control of 
I t  D is t r ib  ut e d Pa 1- a met e r S y s t e m s U s i ng Mu 1 t i 1 ev e 1 T e c hni qu e s , 

66-556 ,  by David Arthur Wismer,  Jr.,  was car r ied  G u t  under the direc-  

N u mb e r 

tion o€ C. T. Leondes, E. B. Stear, and A. R.  Stubberud, in the Department 

of Engineering, University o€ California, Los Angeles. 

This  project is sponsored in  part by the National Aeronautics and 

Space Administration under Grant NsG-237-62 to the Institute of Geophysics 

and Planetary Physics of the University. 

This  report  was the bas i s  f o r  a dissertation submitted by the Author. 



' .  

8 

TABLE O F  CONTENTS 

Page 

vi LIST OF ILLUSTRATIONS . . . . , * .  " . . . . . . . . .  
CfiAYTEH 1 - INTHODUCTION . . . . . . . . . .  C .  . . . .  

1. 1 Optimal Control Theory . . . I . . . . . . . . . 
1. 2 Dis t r ibu ted  Parameter  Systems . . . . . . . . . I 

1 . 3  Multilevel Control . . . . . . . I . . . . . . . . . 
1.4 . . . . . . . . . . Scope of the Dissertation . . . 

CHAPTER 2 - MULTILEVEL CONTROL . . . . . . . . . . . 
2 .1  Introduction . . . . . . . . . . . . . . . . . . . . . 
2 - 2  Dynamic Systems . . . . . . . . . . . . . . . . 
2.3 Static Systems.  . . . . . . . , . . . . . . . . . . 

OF DISTHIBZJTED PAHAMETEH SYSTEMS. 
CHAPTER 3 - DISCHETIZATION AND DECOMPOSITION 

3 . 1  Iritroduction . . . . . . . . . . . . . . . . . . . . . 
3 . 2  Problem Statement . . . . . . . . . . . . . 
3. 3 A Se:nidisci,ete Approximation . . . . . . . . 
3 4 Discretization and Decomposition - 

3. 5 Elliptic, Ilyperbolic, and 
a Special Case . . . " . . . . . . . . l  . .  

Biharmonic Equations . . . . . . . . . . 
CHAPTER 4 - VARIATIONS OF THE OPTIMAL 

CONTROL PHOBLEM FOR DISTHIBUTED 
PAHAMETEK SYSTEMS AND THEIR 
EFFECT ON MULTILEVEL CONTHOL . . . 

4 . 1  Variations i n  Problem Statement . . . , . . . . 
4 . 2  Multilevel Control Considerations . . . . , . 

CHAPTER 5 - FOHMULATION OF SOME EXAMPLE 
PHOBLEMS . . . . . . . . . . . . , . . 

5. 1 Introduction . . . . . . ' . .  . . . . .  . .  
5 . 2  RIinimum Effort, Fixed End, 

Linear Problems . . . . . .  . . . . . . . . . .  
5 . 3  A Nonlinear Problem . . . . . . . . . . . . . . . . . 

1 

8 

8 
8 

20 

22  

22  
23 
25  

30 

47 

50 

50 
54 

63 

63 

63 
69 

iv 



4 '  

TABLE OF CONTENTS (Continued) 

5. 4 
5 .  5 
5. 6 

A State Inequality Constrained Problem . . . . .  
Some Boundary Control Problems.  . . . . . . . .  

Inequality Constraints . . . . . . . . . . . . . . . .  
Some Problems Involving Control 

CHAPTER 6 - NUMEHICAL PHOCEDUHES 
AND RESULTS . . . . . . . . . . . . . . . .  

6. 1 Subsystem Optimization , . . . . . . . . .  
6 2 The Computer Program . . . .  . . . . .  
6 .  3 Minimum Effort, Fixed End, Linear 

6 .  4 Minimum Effort, Fixed End, Nonlinear 

6. 5 Minimum Effort, State Inequality 

6. 6 

Examples w i t h  Distributed Control . . . .  

Example with Distributed Control . . . . . . .  

Constrained Example . . . . . . . . . . .  

Using Boundary Control . . . . . . . . . .  
Minimum E r r o r  plus Effort 

CHAPTER 7 - CONCLUSIONS AND HECOMh'IENDATIONS 
FOH FURTHER STUDY . . . .  . . . . . . .  

. .  KEFEHENCES . . . . . . . . . . . . . . . . .  
APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . .  

A n  Example of Sufficient Convergence Con- 
ditions for the Gauss -Seide1 Controller 

APPENDIX B . . . . . . . . . . . . . . . . . . . . .  . . .  

Consistency and Convergence of the Semi- 
discrete  Approximation of a Linear Pa ra -  
bolic Partial  Differential Equation 

Page 

7 1  
74 

80 

83 

83 
86 

86 

100 

103 

107 

109 

112 

118 

120 

V 



LIST OF ILLUSTRATIONS 

Figure 

2. 1 

3 . 1  

3 . 2  

5. 1 

6 1  

6. 2 

6. 3 

6. 4 

6. 5 

6 .  6 

6.  7 

6. 8 

6 9  

6. 10 

6 .  1 1  

6 .  12 

6. 13 

6.. 14 

Iiepresentative Subsystem . I . . . . .  
Illustration of an Irregular Point . . . "  , 

The A Matrix . . . . , . ~ . , . , . .  . . . +  

Gauss-Seidel Procedure for N=3 . . . . .  > 

Second- Level Controller Program . . . ,  

Using Quasilinearization . - .  
Subroutine for Subsystem Opt i rrii zat ion 

Control and Hesponse for Minimum Effort 
Linear Example Using Two Subsystems . . . . . 
Control and Hesponse a s  Functions of Time . . . 
Initial and Final Values of Coupling 

Hamiltonian Conc ergence for  T w o  Subsystems . . 
Control and Hesponse for Three Subsystems. . . 
Coupling Constraints for Three Subsystems . . 
Control and Hesponse for Nonsymmetric 

Coupling Constraints for Nonsymmetric Example. 

Control and Hesponse for Nonlinear Fxample . . 
State hesponse and Coupling Constraint for  

Couplirig Constraints, Control, and Hamiltonian 
for the State Constrailled Example . . 

Boundary Controls a n d  Terminal States for 
Minimum E r r o r  Plus Effort Example . . 

Constraints for Two Subsystems . . . .  . 

Minimum Fffort Example . . . . . .  

State Inequality Constrained Example . . . . .  

Page 

11 

27  

36 

68 

87 

88 

9 1  

92 

93 

94  

97 

98  

99  

10 1 

102 

105 

106 

108 

v i  



CHAPTER 1 

INTRODUCTION 

1. 1 Optimal Control Theory 

In recent years ,  control systems theory has been largely 

concerned with problems of optimization. 

dealt with systems described by ordinary differential equations and 

termed lumped parameter systems. More recently, considerable 

interest  has emerged in the optimization of systems described by 

partial  differential equations and termed distributed parameter sys-  

tems. Still another c lass  of optimization problems deals with static 

optimization o r  systems described by algebraic equations. This dis - 
sertation w i l l  t reat  the distributed parameter  systems problem a s  an 

(approximately) equivalent problem for lumped parameter o r  static 

systems. 

Most of this effort has 

The particular problem considered is one of choosing a con- 

t rol  variable(s) such that a. given functional of independent, depen- 

dent, and/or control variables is maximized o r  minimized. This is 

to b e  accomplished while satisfying certain equality and /or  inequality 

constraints called side conditions. 

differential equations can be handled by a number of methods; 

namely, the calculus of variations Pontryagin's maximum principle, 

and grad- Bellman's dynamic programming, functional analysis, 

ient methods. 34J  3 5  Recently Dantzig 

linear dynamic systems by a generalized linear program. 

the above methods a r e  also applicable to static system optimization. 

Problems of this type involving 

9 54 

5,37 7 

19 
has treated the optimization of 

Certain of 

Several authors have detailed the relationship between some 

of these methods. 

theorems of the calculus of variations using dynamic programming, 

In particular, Dreyfus21 has derived many of the 

1 
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and Hestenes28 has demonstrated the relationship between the 

calculus of variations, the maximum principle, and dynamic pro - 
gramming. 

Perhaps the greatest  effort has been expended in solving 

linear problems with quadric cost functionals because these lend 

themselves nicely to analytical results. 

tions these properties do not adequately represent the physical s i t u -  

ation arid one is forced to deal with nonlinear systems which may be 

of high order and with complicated cri terion functions. Since such 

problems a r e  not amenable to analytical solutions, much research  

has been done on the computational aspects of obtaining numerical 

results. For  example, the necessary conditions for  optimality 

arising from the calculus of variations (or other) treatment give rise 

to various two point boundary value problems. 

of higher order  than the original s ta te  equations and have initial 

values specified for some equations and final values specified for  

other (or the same) equations. 

lem, iterative methods a r e  generally required f o r  its solution. 

Particular techniques a r e  (1) quasilinearization which i terates  on 

the solution trajectories , (2)  Newton-Raphson (a second variational 

technique) which i terates  on certain initial conditions, and (3)  gradi- 

ent o r  steepest descent which i terates  on the control variable. 

The method of quasilinearization was used extensively in this inves - 
tigation. 

However, in many s i t u a -  

These problems a r e  

Because of the nature of this prob- 

30 

10 

34 

1. 2 Di s t r ib ut ed P a r a  met e r Sy s tems 

The pioneering work in optimal control theory for  dis- 

tributed parameter systems w a s  done by Butkovskii and Lerner  

1960 and Butkovskii has been a constant contributor since that 

time. 

15 in 

16, 17 
The approach taken in much of this work is based on 
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extending Pontryagin's maximum principle. 

W ang 642 65 has developed the necessary conditions for  the optimal 

control of distributed parameter systems using the formalism of 

dynamic programming. Wang also discusses stability, controlla- 

bility, observability, approximation methods, and instrumentation. 
11 22  57 4 

Other investigators a r e  Brogan, Egorov, Sakawa and Axelband, 

each of whom t rea ts  certain classes of problems by various methods. 

In this country, 

Fo r  all of the theoretical work reported, computational r e -  

sults have been notably absent. Brogan'' gives results for  the 

linear one-dimensional diffusion equation with distributed control 

and Sakawa t rea ts  a similar problem with boundary control. One 

of the reasons for the sparse  number of examples is undoubtedly the 

computational difficulty involved in solving these problems. In fact, 

Wang ra i ses  the question of the relative merit  in discretizing the 

necessary conditions for optimality versus  discretizing the original 

system partial differential equation since some approximation is 

generally required in obtaining a solution. 

taken in this dissertation by reducing partial differential equations to 

ordinary differential equations through spatial discretization. 

hoped that this approach wil l  lead to numerical solutions for a 

broader c lass  of problems than would otherwise be attained. 

56 

64 

The latter approach is 

It is 

A s  mentioned above, two types of problems a r i s e  in the 

optimization of distributed parameter systems; namely, (1) dis- 

tributed control and (2)  boundary control. 

control is distributed over the entire spatial domain, and in the 

latter,  it is distributed only over the boundary domain. 

worthy that in most physical situations, t rue distributed controls 

a r e  not present. 

model approach. 

In the former case the 

It is note- 

This fact gives additional impetus to the discrete 

Some examples of distributed parameter  systems 
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a r e  continuous furnaces, electrical power transmission systems, 
64 and re-entry vehicles with ablative surfaces.  

1 . 3  Multilevel Control 

The t e r m  multilevel control implies the decomposition of 

a (large) system into smaller (independent) subsystems and the co- 

ordination of these subsystem solutions by a "superior" controller 

which operates on several  or all  of the subsystems. 

controllers might be called first-level, their  "superiors, 

level, etc. 

by Mesarovic 

the term multigoal implies that the subsystems may have different 

The subsystem 
11 second- 

This nomenclature is part  of a general theory introduced 
48 fo r  treating multilevel, multigoal systems where 

' goals o r  objective functions. Many papers have elaborated these 

concepts (see for instance the bibliography in Reference 49).  

work reported here will refer to a two leve1,N goal system. 

to  date, the t e r m  multilevel control has been used in connection 

with optimization problems and re fers  to an off-line type of control. 

A better t e r m  might be multilevel optimization; however, the for- 

mer  terminology is retained here. 

The 

A s  used 

In i t s  present context, the idea of decomposition for solving 

optimal control problems seems to have originated with Dantzig and 

Wolfe who, in 1960, adopted this procedure for  solving iarge 

linear programming problems! More recent work at  Case Institute 

of Technology has considerably extended the theory of multilevel 

20 

'Elements of decomposition are  also present in K r ~ n ' s ~ ~  method of 
tearing'' and Bellman1s7 dynamic programming for network 1' 

a naly s is and optimization r e  spec t ive ly . 
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41  control. Lasdon t rea ts  the steady state optimization of nonlinear 
39 

systems and shows, using the Kuhn-Tucker theory, that a certain 

saddle-value problem results,  and M a ~ k o ~ ~  has extended these r e -  

suits to dyfiamic nonlinear systems. Takahara t rea ts  linear 

dynamic systems in a somewhat different way using features in- 

herent in the system linearity. Recently Bauman' has extended 

some of the above results to trajectory decomposition and has given 

some computational examples. 

main background for the work reported here and they wil l  be 

reviewed briefly in Chapter 2. 

59 

References 41  and 45 provide the 

The multilevel control problem can also be approached 
1 9  f rom the point of view of mathematical programming. Dantzig 

63 and Varaiya have reported results in this area.  The interesting 

question of duality also a r i ses  and is d iscussed  by Pearson. 52, 53 

Kulikowski4' formulates a number of linear multilevel control 

problems using the theory of M. Krein and also t rea ts  the related 

question of optimal aggregation. The latter question arises partic- 

ularly in certain problems i n  operations research. 

Lefkowitz 

design and delineates four levels of control; namely, regulation, 

optimization, adaptation, and self -organization. 

1 

Finally, 
43 

discusses a multilevel approach to control system 

1 .4  Scope of the Dissertation 

Some of the objectives of this research  a r e  as follows: 

1. To formulate distributed parameter  systems in the con- 

text of multilevel control by spatial discretization. 

To determine a decomposition approach which wil l  tend 

to minimize coupling constraints between subsystems. 

2. 
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3 .  To determine the relative meri ts  of various second- 

level controllers in handling the high dimensionality 

resulting from the spatial discretization. 

To demonstrate the applicability of this approach to a 

wide c lass  of problems including nonlinear problems 

and problems having i r regular  and / o r  higher order  

(greater than 1) spatial domains. 

To solve a representative number of example problems 

using the multilevel approach. 

4. 

5. 

This dissertation is intended to present the results of this 

The purpose of Chapter 1 is to lay a framework for  the research. 

three major ideas with which the dissertation is concerned; namely, 

optimal control theory, distributed parameter systems, and multi- 

level control. A further purpose is to outline the goals of the r e -  

search and to preview the subsequent material  in the dissertation. 

Chapter 2 describes some theoretical aspects of multilevel 

control and fixes the terminology to be used throughout the 

remainder of the dissertation. 

a t  Case Institute of Technology, Cleveland, Ohio. 

Much of this material  was developed 

Chapter 3 defines the classes  of optimal control problems 

which can be attacked by a multilevel approach. 

semidiscrete model is developed. 

special case of a nonlinear diffusion equation with quadratic cost 

functional a r e  then developed in order  to fix ideas. 

A fairly general 

The necessary conditions for the 

Chapter 4 discusses the pros and cons of using multilevel 

techniques f o r  solving the problem proposed here and briefly t rea ts  

some controllability questions. A l s o  presented is a critique on 

various second -level controllers along with some miscellaneous 

topics such as state inequality constraints and time discretization. 
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Chapter 5 formulates a number of example problems using 

the ideas of multilevel control. 

Chapter 6 presents numerical results for several  of the 

examples formulated in Chapter 5. 

puter program and the method of quasilinearization used in obtaining 

subsystem solutions is also contained here. 

A brief aescription of the com- 

Chapter 7 presents the conclusions reached in this research 

and details some areas where further study would be fruitful. 
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CHAPTER 2 

M U L T I L E V E L  CONTROL THEORY 

2 . 1  Introduction 

This chapter w i l l  review some multilevel control tech- 

niques f o r  the optimization of nonlinear static and dynamic systems. 

Particular emphasis w i l l  be placed on the convergence properties of 

various forms of second-level controllers including a Gauss-Seidel 

type controller introduced here. 

The theory of multilevel control has two significant features 

in solving an optimal control problem; namely, (1) a conceptual 

simplification for large systems and (2) a possible reduction in the 

computational burden involved in computing optimal controls. The 

first advantage is achieved by treating an n 

independent subsystems of order  n where 

th  order  system a s  N 

j 
N 

n = C  r, 
j = l  j 

The subsystem independence is attained by relaxing one (or more)  

of the necessary conditions for optimality and then satisfying this 

condition with a second -level controller. This technique of solution 

requires an iteration between levels of control and thus no guarentee 

of computational time reduction can be made. 

the reduced subsystem size may permit the solution of problems not 

otherwise possible. 

However, in theory 

2. 2 Dynamic Systems 

Consider the dynamic optimization problem of minimizing 

the functional 

J ( M )  = f1  F(U, M, t)  dt 
0 



subject to the side constraints given by 

U = G(U, M, t); U(0) = U 0 

R(U, M, t )  1 0 

where 

U = n dimensional state vector 

M = m dimensional control vector 

F = scalar  function of class C 2 

G = vector function of dimension n with components 
2 of c lass  C 

R = vector function of dimension r with components 
2 of c lass  C 

@ = vector function of dimension q(5n) with components 
2 of class  C 

In order  to employ multilevel techniques, the system 

((2. 1 ) - (2 .  5)) is decomposed by partitioning the state vector U into 

In order  to attain independent subsys- N subvectors U1, . . .  , 
tems,  a pseudo-control vector S is substituted for variables U 

M. (i f j )  (or functions thereof) appearing in  the j 

Assuming that (2. l), (2. 3), and (2. 5) a r e  naturally separable into 

subsystems, the optimization problem can be restated a s  minimizing 

uN’ 

i’ 
j th 

subsystem. 
1 

t 

N 
J ( M )  = f1  F.(U., M t)dt 

j = l  o J J 3’ 

This assumption can be relaxed (see References 6 and 45)  but this 
would not add to the present discussion. 

1 
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with side constraints 

U.= G.(U. j  M . j  S . j  t) ; U.(0)=Ujo 
J J J  J J  J 

J J j’ 
R.(U.,  M t )  2 0 

kbo(tl) = 0 

$(uj(tl)J tl) = 

and coupling constraints 

e.(U.,  M t )  = Si ( i g j )  
J J j’ 

where 

j = 1, . . . ,  N. 

e .=  vector function of dimension h i with 
2 1 

components of c lass  C 

(2. 11) 

The elements of 8. 1 in (2. 11) represent inputs to subsystems other 

than the i 
th . A convenient notation for  (2. 11) is 

(2. 1 2 )  

A representative subsystem is shown schematically in Figure 2. 1. 

The Hamiltonian corresponding to((2. 6)-2.  12)) can now be 

where X.,  p . ,  p ij a r e  appropriate Lagrange multipliers of dimension 

n., h., and 1 respectively and a r e  assumed to exist. 

The canonical 5 i j  
Euler equations” 24 immediately yield the necessary conditions 

J J  
The sca la rs  

J J  60 
correspond to the slack variables of Valentine. 

U . =  HA 
J j  

A .  = - HU 
j J 

(2. 14) 

(2. 15) 
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I 

E w 
E 
m 
3.1 

9 

tn a 
rn 

in a 



HM = 0 
j 

12 

(2. 16) 

Pij Rij = o  

H = O  
'j 

H = O  
Si 

i = 1, . . . ,  r 
j 

(2. 17)  

(2. 18) 

(2 .19)  
J 

j = 1, . . . ,  N 

The transversality, Erdmann, Clebsch, and Weiers t rass  necessary 

conditions a r e  likewise easily determined. 
6 ,  45 

To realize the benefit from a reduction in dimensionality 

w i l l  require necessary conditions f o r  the satisfactionof (2.14)-(2.19)) 

which a r e  dependent on individual subsystems only. 

possible for all  of ((2. 14)-(2. 19)), one or more of these conditions 

can be relaxed within the (first-level) subsystems and satisfied by a 

second- level control. 

Since this is not 

The second-level variables a r e  treated a s  

parameters at the first-level. 

these parameters and solve all  first-level subsystems. 

tern results a r e  of course nonoptimal for the overall problem. 

first-level results a r e  then transferred to the second level where 

new parameter values a r e  determined. 

to the first-level subsystems and the entire process repeated until 

a l l  necessary conditions a r e  satisfied simultaneously. 

The multilevel approach is to guess 

The subsys - 

These 

These values a r e  then passed 

th  Defining the Hamiltonian for the j subsystem as 

J 

H.=  F . + X .  T G . + p T ( e . - S J )  + pij (Rij- 52.) 13 i= 1 J J J J J J  
(2.  20) 
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and treating the S . ( j = l ,  . . . , N) as parameters  t yields the following 
J 

first-level necessary conditions 

J 

( H )  = O  
j M j  

(2 .21)  

i =  1, .  . . r. 
J 

(H.) = 0 
J Pj 

j = 1,.  . , N  

The condition remaining to be  satisfied by a second-level control is 

(2. 19) .  

s traints (2. 12)  a r e  always satisfied by each subsystem. At any point 

in the -iteration, the solution, whi le  .nonoptimal, does represent the 

actual overall system. 

This method is termed "feasible" since the coupling con- 

In order  to put (2. 13)  in a form suitable for  the determina- 

form ( P ' ) ~ S .  ( j = l ,  , . . , N). The second-level necessary condition is 

now 

tion of (2, 19) ,  rearrange the  set of t e rms  pj S l j = l ,  * .  , , N l T J  
J 

j = 1 , .  . . , N (H) - p = O  j 
j Si 

(2. 22) 
J 

j where the p a r e  treated a s  parameters 

One method of satisfying (2. 22) is by a 

by the second-level controller. 

gradient controller of the form 

'The S J ( j = l , .  . . N) a r e  thereby parpmeters also since 
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dS.(t, a) - = a((H.) - pJ) 
do J s j  (2. 23) 

where cr represents iteration t ime and a is a scalar to be determined. 

It can be shown45 that i f  J is to be maximized, a>O; and if J is to  be 

minimized, a < 0. Furthermore (2. 23) will converge to the desired 

solution (2. 22 )  if S.(t, 0) is suitably chosen. One restriction of this 

method is that each subsystem must have a t  least a s  many degrees of 

freedom (controls) as the number of coupling constraints (2.  12 )  added 

J 

to i t .  

Some added difficulty may be encountered in obtaining the 

is a function of U .  only. In this case subsystem solution when 8 

the coupling constraint is essentially a state equality constraint along 

the entire path and must therefore be differentiated until the control 

appears explicitly. 8 J  l3 The corresponding necessary conditions are  

different than (2. 21 )  and a r e  generally more difficult to solve. 

subsystem as 

j J 

t h  
Redefining the Hamiltonian for  the j 

where the subsystem criterion function is now 

(2. 24) 

(2. 25) 

j and treating the p .  ( j = l ,  . . . , N )  (and therefore p ) as parameters,  

yields the following first-level necessary conditions 
J 
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p . . R . .  = 0 
13 1J 

(2. 26 )  

i = 1, . . . ,  r. 
J 

J 
j = 1, ..., N 

The condition remaining to be satisfied by a second-level control is 

now (2. 18). 

constraints are not satisfied during the course of the iteration but 

only when the second level has converged. 

This method is termed "nonfeasiblel' since the coupling 

The second-level necessary conditions can now be stated 

from (2. 20) as 
j e.-s = o  

J 
j = l , . .  

where the S a r e  now treated as j 

(2. 2 7 )  

. , N  

parameters .  Again using the grad- 

ient controller at  the second level yields 

(2. 28)  

j = l ,  . . . ,  N 

In this case, it can be shown45 that at  the optimum a saddle value 

r e s u l t s  between (2. 26 )  and (2.  27). 

mized, a < 0 ;  and when J (M)  is to be minimized, a >  0. Conver- 

gence of (2. 28) to (2. 27)  is guaranteed if  the-p.( t ,  0 )  are suitably 

chosen, and i f  each subsystem is formulated such that it has at least 

a local minimum with respect to both M. and S 

tion is quite restrictive. To circumvent this difficulty, Bauman 

Thus when J (M)  is to be maxi- 

J 

The latter condi- 
J -  j' 6 
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has proposed a n  alternative procedure for satisfying (2. 27)  using the 

second-variational techniques introduced by Breakwell. 10 

A n  alternative to these methods is to assign both (2. 18) and 

(2. 19)  to the second-level controller. 

a r e  treated a s  parameters in the subsystem and the second-level 
59 necessary conditions a r e  given by (2.  22 )  and (2. 27).  

has proposed this method for linear dynamic systems in which al l  

subsystems a r e  solved before determining new parameter values 

( p . ,  S.)  a t  the second level. 

here is to determine and use new values of the parameters p 

S. a s  soon a s  the required first-level data is available. This ap- 
J 

proach is analogous to the Gauss-Seidel technique 

linear algebraic equations and as such w i l l  be termed the Gauss- 

Seidel second-level controller. 

In this case both p and S. 
j J 

Takahara 

A variation of this approach a s  suggested 
J J  

and 
j 

61  for solving 

It is of interest  to examine the con- 

ditions under which convergence is guaranteed by this method. 

question has not been completely answered; however, some results 

a r e  available. 

tive procedure is intended), 50J 

of equations 

This 

For  static systems (for which the Gauss-Seidel i t e ra -  

the solution U to the linear system 

A U + F = M  (2. 29) 
0 converges for any initial guess U 

C have modulus less  than unity where 

if al l  the eigenvalues of a matrix 

A = n x n matrix 

F , U , M  = n vectors 
C = - *-I& 

A 

A 

= lower triangular part of A 

= upper triangular part of A (above 
diagonal) 
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This condition can be shown to hold whenever A is Hermitian, posi- 

tive definite. has shown that the A matrix resulting from 

the discretization of the elliptic partial differential equation 

50 6 2  Varga 

x x E a b  (2. 30) 
1’ 2 U ( X l ,  x2) = f ( X l ’  x2) 

K > 0 ,  K > O , o L  0 1 2 

is real, symmetric, with positive diagonal entries and nonpositive 

off-diagonal entries. Moreover, if the vector of boundary mesh 

points F is written separately a s  in (2.  29),  A is irreducibly diag- 

onally dominant so that A is positive definite! Hence the state 

equation of the form (2. 29)  resulting from the discretization of 

elliptic partial differential equations will converge by the G a u s s -  

Seidel method for  given M and F. 

ever  is to solve an augmented system of equations consisting of 

(2.  29)  plus the stationarity condition on the control M, and the state 

variables U (assuming no inequality constraints). Fo r  the case of a 

quadratic cri terion function, this augmented system has the form 

The optimization problem, how- 

A ’ Z  = B (2. 31) 

where 

ZT = [U,  A], a 2n dimensional vector 

X = Lagrange multiplier, n vector 

A = 2n x 2n matrix 

B = 2n dimensional vector 

t 

tAn identical result holds for  the negative of the A matrix arising 
f rom the parabolic equations discussed in Chapter 3 .  
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I 
However, A is no longer necessarily symmetric and therefore no 

longer positive definite although it may still contain some other 

properties of A ; namely, real with positive diagonal entries and non- 

positive off-diagonal entries.  

for  (2. 31). 

multilevel control utilizes subsystems composed of aggregated ele- 

ments of U (rather than single elements) is not expected to change 

the convergence properties given above. 

Thus convergence is not guaranteed 

The fact that the Gauss-Seidel procedure as proposed for  

2 Antosiewicz gives a convergence cri terion for  the iterative 

solution of nonlinear static systems of the form 

z = f(Z) ( 2 . 3 2 )  

where f is a vector function defined over a normed linear space 

R 

tion corresponds to the augmented system (2. 31) obtained for  linear 

systems. 

n and satisfying Lipschitz conditions with respect to Z. The nota- 

Namely, the set of equations 

(2.33) 
k Zkf l=  f(Z ) 

0 w i l l  converge to the solution of (2. 32) for Z suitably chosen if  

llLll 1 ( 2 ”  34) 

where L is the matrix of Lipschitz constants. Naturally, conver- 

gence depends upon the norm chosen. 

3 6  Kolmogorov gives a convergence cri terion for  infinite 

dimensional function spaces based on the principle of contraction 

mapping. Consider the se t  of differential equations 

z = f(Z, t )  (2.  35) 

0 
Z(t = z 

0 

n+l  where f is a continuous vector function on the space R and 

satisfies a Lipschitz condition with respect to Z , namely, 



' 

In the above ZT = [z,, . . . , zn] and M is considered a s  a parameter.  

Letting T be the integral operator arising from (2. 351, the se t  of 

iterative equations 
Z k + ' = T ( Z  k ) 

will converge to the solution of (2. 35)  if 

L(t-t ) <  1 
0 

(2 .37)  

(2. 38) 

and Zo is suitably chosen. 

Takahara 
59 

has shown a sufficient convergence condition for 

the iterative solution of linear dynamic systems using decomposition 

and a second-level controller analogous to the Jacobi methodg6 of 

solving discrete representations of elliptic partial differential equa- 

tions! This result, based on (2. 38)  requires that the norm of a com- 

plex function of inverse Laplace transforms be less  than unity. 

most cases  this criterion is too complex to be of any practical value. 

In 

Various sufficiency conditions relating to the convergence of 

the Gauss-Seidel second-level controller have been reviewed above. 

That these conditions (in particular (2. 38)) a r e  overly restrictive 

when applied to the augmented system of equations arising in linear 

dynamic optimization problems is shown by example in Appendix A .  

In practice, the Gauss-Seidel second-level controller was found to 

have excellent convergence properties when applied to both linear 

and nonlinear problems of the type arising from semidiscrete approx- 

imations to parabolic partial differential equations. These conver- 

gence properties a r e  further discussed in Chapters 4 and 

'The Gauss-Seidel method fo r  treating these problems is 
64 converge exactly twice a s  fast a s  the Jacobi method. 

6. 

known to 



2. 3 Static Svstems 

Consider the static optimization (minimization) problem 

given below 
min F ( U , M )  

M 
such that 

G(U,M) = 0 

(2.  39)  

(2. 40) 

and R(U, M) S 0 (2.  41) 

where u = state vector in E~ 

M = control vector in E 

F = scalar function in C 

G = n vector of functions in C 

R = r vector of functions in C 

m 

2 

2 

2 

In order  to t reat  ((2. 39)-(2.41)) by multilevel techniques, 

it is again necessary to formulate independent subsystems by sub- 

stituting pseudo-control variables S for  all variables (or  functions) 

entering the j subsystem from other subsystems. Assuming that 

(2. 39) and (2. 41) can  be written in separable form, the above opti- 

mization problem can be stated as 

j th  

N 

such that 

G.(U. ,  M S.) = 0 
J J j ’ ~  

(2. 42)  

(2.43) 

( 2 . 4 4 )  

with the coupling constraints 

(i f j )  (2. 45) i 9 . (U . ,  M. 1 = s 
J J  3 

where 8 .  is a vector function of dimension h. having elements which 

a r e  inputs to other subsystems. 
J J 

A convenient notation for (2. 45) is 

20 
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r j  
L = F.+XTG.+pT(O.-SJ)+ p . .  1J (R 1J . . - E ” . >  1J 

(2. 46) 

, 

The Lagrangian L associated with ((2. 42)-(2. 46)) can be 

written as 

(2. 47) 

where X., p . ,  pij are  Lagrange multipliers of appropriate dimension 

and the a r e  slack variables. The necessary conditions f o r  a 

minimum are 

J J  
i j  

c1 i j  Rij = o  

(2. 48) 

i =  1, . . . ,  r 

j = 1, . . . ,  N 
j 

The remaining development of multilevel control for  static 

systems is analogous to the discussion in Section 2. 2 and wi l l  there-  

fore  not be given here. 

6, 1 2 ,  41, and 42. 

For a detailed discussion see References 



CHAPTER 3 

DISCRETIZATION AND DECOMPOSITION OF 
DISTRIBUTED PARAMETER SYSTEMS 

3 . 1  Introduction 

The optimal control of distributed parameter  systems has 

in  recent years  received considerable attention a s  a subject for  

research. 

Butkow ski 15' l6 and Wang 

have extended the theory of optimal control to include distributed 

fields by using Pontryagin' s maximum principle and Bellman' s 

dynamic programming respectively. 

incomplete and the computational problems severe.  

these reasons the only applications which have appeared in the l i tera- 

ture  treat linear partial differential equations in one space dimension 

and with some form of quadratic cost functional. 

The pioneering work in the field has been done by 
65 beginning in 1960. These researchers  

However, this theory is sti l l  

Perhaps for  

1 1 , 5 6  

In solving these problems some form of approximation must 

inevitably be made. 

is possible, it takes the form of an infinite se r ies .  Otherwise, the 

(numerical) determination of certain Green's functions and the solu- 

tion of a two-point boundary value problem is required. 

In the r a r e  cases  where a closed form solution 

The approach proposed for this dissertation is to t reat  a 

lumped approximation in the spatial domain of the distributed param- 

e te r  system. 

larger body of control theory, several  questions arise;  namely, (1) How 

can boundary conditions and particularly boundary control be treated, 

and ( 2 )  Can computational techniques be devised to handle the (in 

general) large number of interacting differential equations required 

to obtain a sufficiently accurate approximation to the distributed 

Although this approach admits the application of a 

\ 
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system? If these two questions can be answered satisfactorily, the 

present c lass  of optimal control problems for distributed parameter  

systems which can be treated effectively can be considerably 

enlarged. 

cerning the convergence of the solution of the approximate system to 

the distributed system wil l  b e  treated in this chapter. 

These questions and the important related question con- 

3 . 2  Problem Statement 

The optimal control problem for the case of distributed con- 

t ro l  considered here is to minimize the functional 

subject to the scalar  partial differential equation side constraint 

XEQ, t z  t 
0 

( 3 .  2 )  

with boundary conditions 

and initial conditions 

u(XJto)  = uo(x) X E S 2  (3 .  4 

In (3 .  3) ,  n indicates a direction normal to the boundary. 

m(X, t )  may also be required to satisfy inequality constraints of the 

form 

The control 

X E S 2 , t ~  t ( 3 .  5) R(!(XJ t ) J  m(xJ  t )J  x, t)' 

$o(tl) = 0 

0 

and terminal constraints of the form 

X E Q  (3 .  6 )  
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In the above equations the following symbols are  defined 

R 

u(xl, x2,. . . , xn, t),  a scalar state variable 

rn(xl, x2 , .  . . , x , t), a sca l a r  control variable 

a given finite (connected) region in Euclidean 

n-space and SZ 

spatially varying differential operator on u (up to 

second order )  which may include parameters  which 

are  functions of u, m,X, o r  t 

closure of R 
real-valued functions of class C on t and piece- 

1 w i s e  C on SZ 

real-valued functions, piecewise C1 on S l  

C on t which satisfy 

n 

is the boundary of S2 b 

2 

and b 2 

(3 .  7) 

a vector-valued function of dimension r with 

components R which a r e  of c lass  C on t and 

and piecewise C on 0 

a vector-valued function of dimension q with com- 

ponents I). which are of c lass  C on t and piece- 
1 wise C on Q 

2 

i 1  

2 
1 

It is assumed that the functions R and I) are consistent with the 

boundary conditions in (3 .  3 ) .  

Consideration of a scalar  state variable u excludes the 

class  of problems defined by hyberbolic and biharmonic partial dif - 

ferential equations. 

in a later section. 

attention to the class  of problems having a fixed terminal time. 

The reason for  their exclusion will be discussed 

Note that the first of Equations ( 3 . 6 )  res t r ic t s  
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The optimal control problem for  the case  of boundary con- 

t r o l  (control variables contained only in boundary conditions) is not 

easily treated in the generality shown above. In this case consider 

the following criterion functionai 

0 

subject to the partial  differential side constraints 

and boundary and 

XEQ, t 2 t (3 .  9) 
0 

initial conditions given by (3 .  3 )  and (3. 4). The 

inequality constraints become 

X€Qb,  t >  t (3.10) H (fcx, t), x, t) 
0 

and the terminal conditions are given by (3 .  6). Cases  where the 

boundary control f appears explicitly in the cri terion functional, can 

a l so  be treated if the spatial integration of f is taken only over the 

boundary domain. Several s u c h  examples are given in Chapter 5. 

3 . 3  A Semidiscrete Approximation 

The optimal control problems posed above can be solved by 

the theory of Chapter 2 i f  suitable approximations can  be found. The 

approach taken here is to discretize the spatial variables by defining 

a vector 

x = (il(Axl), i2(Ax2), . . . , i.(Ax.), D .  . , i (AXn)T 
- i J J  n (3. 11) 

which in effect places a grid on the region S2. H e r e  the elements of 

N 
j ’  
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Denoting the set of points defined by (3. 11) by # and following 

Young" and Varga 

point-a point in # ; inter ior  mesh  point-a point in #n 52; boundary 

mesh p0int-a point in # i'? ab; exterior mesh  point-a point not be- 

longing to  # nz; regular  point-a point belonging to  # n 5 and such 

that all adjacent points a lso belong to # n 3; irregular point-a point 

belonging to  # which is not a regular point. 

62 the following terms can  be  defined: mesh  

64 
Young shows fo r  the case /3 = 0 (see ( 3 . 3 ) )  that i r regular  

mesh points may be treated as regular  mesh points by defining a 

boundary (pseudo) mesh point a t  the intersection of the boundary and 

the line segment connecting the i r regular  point with each exter ior  

point. (See Figure 3 .  1. ) These points can be denoted by 
m 

where 
1 

Ax. = e .Ax j = l , . . . , n  
J ~j 

and 
O ( e . 5 1  

J 
Thus when e .  = 1, ( j  = 1, . . . , n) the point is a regular  mesh  point. 

J 
62 Varga t r ea t s  the case  /3 > 0 for a symmetric l inear 

operator 

ing boundary (pseudo) mesh  points and using the identity 

by approximating the boundary by line segments connect- 

a u  = u COS 8 + u s in  8 
X Y an 

- (3 .  12) 

to  obtain the required approximation ( 8 = angle between the l inear 

boundary approximation and the positive x 

that a nonsymmetric operator G can be treated i f  the boundary is 

composed of orthogonal line segments, i. e. , s in  2 8  = 0. The 

axis). It is easily seen 
1 
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BOUNDARY (PSEUDO) 

IRREGULAR 
P O I N T  

ILLUSTRATION O F  AN IRREGULAR POINT 

FIGURE 3.1 
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following development then requires either (a) p = 0, b) sin 28 = 0,or c)  

symmetric with respect to all x i' i = 1, . . . , n.; J for  simplicity con- 

Since the operator Gis at most second order,  it can be ap- 

sider the case j3 = 0. 

proximated a s  follows 

(3 .  13) 

where Ik= {jli = 0 except for the kth element which = 1 I , 
over all.regular points, and the functions G - i a r e  assumed to be real  

valued and of c lass  C . 
(3 .  1) to (3 .  6)  for  the case of distributed control results in the fol- 

lowing set  of equations for the discretized system: 

ranges 

2 Applying the definition ( 3 .  11) to Equations 

0 
Xi& t r  t - 

where v. = truncation e r r o r  a t  X 
- 1 i 

0 
X . E f l b J  t r  t 

1 cri(t)Ui(t) - -. = fi(t) - - 

u.(t ) = u x . e a  
1 0  1_ 

(3.16) 

(3 .  17)  

(3 .  18) 

= 0 
(3.19) 
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Minimizing (3. 14)  is equivalent to minimizing 

(3 .20)  

It is easily seen that the side constraints (3. 16) and (3. 18) completely 

specify m on the boundary. T h u s  
i - 

and if  R.> 0 a necessary condition 
1 

i f  Ri= 0, m.  is determined by 
1 

xi E a b  (3. 21) - 
for a minimum of (3. 20) is that 

44 
Of Pliat  i 

is the Frechet derivative where - 
i 

Thus the optimal value of m 

boundary and the cri terion function can be written a s  

a pli 
- am - 

i s  completely determined on the 
i - 

(3 .22)  

(3. 23) 

It is not intended that 7. should enter into the optimization, but only 

that it can be determined to evaluate the worth of the approximation. 

Note that only in (3. 15) do cross coupling t e rms  between spatial mesh 

points appear and they appear there in a very special way. The argu- 

ments in (3. 15) corresponding to boundary points can be evaluated 

using (3, 16) .  

1 - 

The system of Equations (3. 15), (3. 1 7 )  to (3. 19), (3. 23)  is 

now in a form quite suitable for decomposition and multilevel 
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solution as seen in Chapter 2. 

general notation considered here  is unwieldy and contributes little to  

the development. 

method is postponed until Section 3.4 where an important special  

ca se  of a nonlinear parabolic partial  differential equation is discussed. 

However, fur ther  t reatment  in the 

Hence further consideration of the decomposition 

Applying the definition (3. 11) to (3. 8) by (3.  10) fo r  the case 

of boundary control results in the following set of equations for  the 

discretized system: 

(3. 24 

X€Ob,  t Z  0 (3. 26) 

The boundary condition (3. 16)  can be used to  get the control as an 

explicit argument in (3. 25). 

not be unique unless it is assumed (as does Wang 

control function does not vary along the boundary. 

* 
In general  the optimal control f 

i may - 64 
) that the boundary 

3 . 4  Discretization and Dec omposition- a Special Cas  e 

Consider the minimization of the functional 

subject to  the nonlinear partial  differential equation side constraints 

2 2 
Vtu(X, t )  = K1(X, u, t ) V  u +K2(X, u, t )V  

where 

u - a(X,t)u +b(X, t)m(X, t) (3. 28) 
1 x2  X 

T 

0 5 x2 S l , t ,  is fixed 

K1> 0, K2> 0, 0 2  0, X = [x 1 2  x ] 

0 9 5 1, (3. 28a) 
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with boundary conditions 

XEQb, t l  t (3. 29) 
0 

u ( x ,  t )  = f(X, t)  

and initial conditions 

u(X, 0) = Li (X) (3. 30) 
0 

Equations (3. 27)  to  (3.30) represent  a fairly general  class 

of problems which can be treated by decomposition. 

s t ra in ts  can be handled equally well using a technique due to 

Valentine but are omitted here fo r  clari ty of presentation. Inequal- 

i t ies  a r e  considered in Chapter 5. ) Variants of (3. 27)  which have 

appeared in the literature are (a) c = 0, minimum deviation from a 

desired trajectory; (b) u(X,t) = u(X,t ), minimum terminal  error; 

(c)q = 0, u(X,t ) = u (X), minimum effort with fixed terminal  condi- 

tions; (d),(e), m(X,t) = 0 ( X e Q ) ,  m(X,t) = f(X,t) (X&,), boundary 

control corresponding to (a) and (b).. 

(Inequality con- 

60  

1 

1 1 

To 

n 

i=l 
vtu = 

handle (3.  28) in its more general  form 

(K.(X, u, t ) u  ) - o(X, t ) u  +b(X, t)m(X, t )  
1 x x  i i  

(3. 31) 

K . >  0, 0 2 0, X = [x (3. 31a) 
1 

is straightforward but cumbersome, In fact, a general  treatment of 

the nonlinearity is impossible and K K will be specialized to  

l inear functions once their  effect upon the decomposition is made 

clear .  

1’ 2 

66 Using the u s u a l  approximation of the second partial  deriva- 

tive, the discrete  form of (3. 28) is 



j * u i - l ,  j )  

(3 .  3 2 )  

where 
Klij= K1(uij, x. lj, t) 

KZij = ~ ~ ( u ~ ~ ,  Xij, t) 

0 i j  = .(Xij, t) 

2 h = A x  = A x  1 

For the case of a linear system, the semidiscrete equation (3 .  3 2 )  

can be shown to be consistent with and to converge to the correspond- 

ing partial differential equation (3 .  28) for h sufficiently small .  

definition of these terms,  along with this proof for the case of a linear 

system of the form (3 .  31) having one space dimension, is given in 

Appendix B. 

The 

Define a natural ordering of interior mesh points over the 

square region s1 as the sequence of mesh points taken from left to 

right and bottom to tc p. Then a vector U having the natural o rder -  

ing is 

u = ( u p 2 ,  ( 3 . 3 3 )  

where 
1 
h 

k = - - l  

and A, the matrix of coefficients, fo r  (3 .  3 2 )  is of the general form 
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i-1' * ' * i-1 i-1 i-1 i- i 

0 
i " "  0. d . . . . .  e -a e i i i 

r ll- 1 
I 

. . .  0 di+l . . 0 e 
I 

i+l -a e 
I i+l i+l 
I 

i d 

0 

1 ;  I 

L J 

where 
a = - 1 (2K + 2K2i+ h 2 oi) 
i h2 l j  

e i = 1 h2 (KJ 

di = (Kzi) 
h2 

t h  
Note that the elements of each row of A, say the i a re  functions of 

only u (as w e l l  as X. and t). 
i 1 

Defining a vector 

composed of all boundary mesh points taken in the natural ordering, 

( 3 .  3 2 )  can be written 



3 4  

7.=h3{ [- 
1 i  1 ax 

where 

(t)] dt (t)+- 
i 

2 2  

2 2  

2 

2 

A = k x k  matrix of form (3.  3 4 )  

B = k x k  

G = k x y  matrix 

M = k vector with elements m 

diagonal matrix with elements b i 

i 

The general element of the truncation e r r o r  vector can be determined 

from a Taylor Series expansion as 

4 
K . V 4  u.+K V 11 xli  1 2 i  x2i 

Having determined this expression for evaluating the truncation 

e r ror ,  V(t) w i l l  not be considered further. 

By using the natural ordering defined above the cri terion 

function (3.37) can be discretized a s  

The truncation e r r o r  7 can be evaluated a s  i 

(3 .  38)  

where P. is the expression in brackets in (3.  37) .  

uate T 

must be suitably approximated. 

In order  to eval- 

and v. a s  the computation progresses,  the derivative terms i 1 

1 

Since no coupling o r  nonlinear t e rms  appear in ( 3 . 3 7  

equation may be written in more compact notation as 

this 

( 3 . 3 9 )  



35 

2 where Ud, U, and M are vectors of dimension k 

k x k diagonal matrices.  

and Q, C are 
2 2  

In order  to minimize (3.39) subject to (3. 35), some decom- 

position technique seems warranted , especially for large vaiues of 

k. Various system decompositions w i l l  now b e  discussed with re-  

gard to the application of three of the second-level controllers pre-  

sented in Chapter 2; namely, feasible, nonfeasible and Gauss-Seidel. 

Decomposition merely involves partitioning the state vector 

U in some convenient way and then introducing pseudo-control vec- 

t o r s  S to achieve subsystem independence. 

to make u s e  of any "natural decomposition" which the system may 

afford by a careful examination of the A matrix. 

discussion, the A matrix is shown explicitly in Figure 3. 2 for  the 

case k = 4. One convenient decomposition is to consider each row 

of the region R as a subsystem. 

then given by the block diagonal matr ices  in Figure 3 .  2 and the coup- 

ling constraints by the diagonals d If subsystems of this form a r e  
i '  

too large to be conveniently handled, a further partitioning can  be 

made as shown by the dotted lines in Figure 3 .  2.  

coupling constraints a r e  more unwieldy, as w i l l  be shown The 

choice of an optimum subsystem s ize  may depend on many factors for 

instance, (a) form of the A matrix, (b) accuracy desired, (c) com- 

puter capacity and speed (d) availability of programs capable of han- 

dling certain size problems. 

having only one space dimension d 

It is obviously desirable 

For  definiteness in 

The subsystem matrices A are  
j 

In this case,  the 

It should be noted that for problems 

equals zero and the A matrix 
i 

is of tridiagonal form t (all zeros except the main diagonal and the 

24 'Gelfand calls this type of matrix a Jacobi matrix. 
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two adjacent diagonals). Correspondingly, i f  the problem has three 

space dimensions, the A matrix contains four symmetrically spaced 

diagonals in addition to the tridiagonal band. 

F i r s t  consider the decomposition f i rs t  mentioned above in 

This which each subsystem corresponds to a row in the region 0.  

partitioning of U yields 

where 

Then 

where 

T T UT = [ U T ,  u 2 , .  . . , uj J . . . , UN 

= ( j - l )k+lJ  q. = jk 
’j J 

- * a u  ) 
‘j 

p.+lJ * j pj 
UT= (u , u  

u.= A.(U. ,  t)U.+B.M.+D .(U. ,  t)S.+G . ( U . ,  t )F j  
J J J  J J J I J J  J J J  

U.(O) = u 
J oj 

, a kx2k matrix 

S = pseudo-control vector of dimension 2k 

= k x k  diagonal matrix with elements (d , . . .,d ) 
j 

j ’j qj 
D 

Because of the form of D ( 3 .  41) can be written equivalently 
1 j  ’ 

f ~ .  = A . ( U . ,  t)U.tB.M.+D.(U.,  t)(Su+S.)+G.(U.,t)F 1 
J J J  J J J J J  J J  J J  j 

U,(O) = u 
0 j J 

U 
where S. = k-dimensional 

J 
1 
j 

S = k-dimensional 

vector, the upper half of S 
j 

vector, the lower ha l f  of S 
j 

(3. 40) 

(3. 41) 

(3. 42) 



The coupling constraint required by this decomposition is 

J 
The set of constraints (3 .  4 3 )  can also be written 

1 u .  = sj - l  

uj  = sj+l 
J 

U 

( 3 . 4 3 )  

( 3 . 4 4 )  

From ( 3 . 3 9 )  the subsystem 

2 1  

criterion function becomes 

0 

where N 
J ( M )  = J j (Mj)  

j = 1  

In the event that c ros s  coupling t e rms  entered into the cri terion func- 

tion, pseudo-controls could be introduced there  also to maintain sub- 

system independence. 

By adding (3. 44) with vector Lagrange multipliers p II 
j’ j 

of dimension k, the Hamiltonian becomes 

+- II; (Uj  -s,”,,> I 1 

u 1  where 
pl= VN= s1 = s = 0 

N 

(3.  46) 

In its present form (3. 4 6 )  is suitable for solution only with a G a u s s -  

Seidel second-level controller. The feasible method is excluded 
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since 2k interconnecting constraints were added to each subsystem 

(except 1 and n )  when only k degrees of freedom were available. 

In o rde r  to insure convergence of the nonfeasible controller, a t  

least  local subsystem minima must exist. 

(the Clebsch condition) for  this is that a certain Hessian matrix be 

non-negative definite, i. e. ,  

A necessary condition 

(3.47) 

fo r  every n;t 0 

where 

Equation (3. 47) is clearly not satisfied since S 

(3. 46). 

control i n  S. which considerably complicates the solution of the 

necessary conditions (see Reference 6). 

drawbacks can be overcome by adding coupling constraints in which 

each t e r m  is squared. With this modification, the nonfeasible con- 

t rol ler  can be used and will be discussed subsequently. 

E .  '[J'JT] = M. ,S. 
J 

appears linearly in 

In addition, the latter condition leads to  singular subsystem 
j 

J 
However, both of these 

For the Gauss-Seidel second-level controller, the necessary 

conditions to be satisfied by the first-level control a r e  

(3. 48) 

Assuming (3. 28) is linear, (3.48) would become 
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1 -1 T 
U.= A.u.- - B.C. B.  X.+D .S .+G.F  

J J J  2 J J  J J  l J J  J j  

>; = 2 Q .  (Ud. -U. ) -A.  T X.- pj- v j  
j J J J  J J  

( 3 . 4 9 )  

with boundary conditions 

j o  
U.(O) = u 

J 

The necessary conditions to be satisfied by the second-level control 

a r e  
/ 

In order fo r  S.  to appear explicitly in the coupling constraint of 

( 3 .  46)' subscripts can be rearranged, i. e. 
J 

Equations (3 .  50) can then be w r i t t e n  

U u .  - sj+l = 0 
J 

o r  in more useful form 

p . = D T  J j - 1  X j - 1  

rp 

The operation of the Gauss-Seidel controller is as follows: 

N )  and set j = 0 1 
G u e s s  S . , v .  (j  = 1,. . ., 

J J  
Set j = j + 1 

1. 

2. 

3. Solve subsystem j for U X 
j '  j 

(3 .  51) 

(3 .  52)  

(3 .  53) 



.. m 

4. Substitute Sy+l - = D.'X - 'j' p j t l  j j 

5. Is j = N ?  

NO - GO to 2 

Y e s  - A r e  (3.52) satisfied to the desired accuracy for 

j=1 , .  . . , N ?  

NO - GO to  7 

Yes - Stop 
1 'p 

6. Substitute SA = U , v  = D f  A j - 1  j j -1  J j 

7. Set j = j - 1  

8. Solve subsystem j for  U X 
9. Is j = l ?  

j' j 

NO - GO to  6 

Y e s  - G o  to 2 

This controller has been found to have excellent convergence prop- 

erties fo r  both l inear and nonlinear problems as will be shown i n  

Chapter 6. 

To satisfy (3. 47)  for  the nonfeasible second-level controller, 

the Hamiltonian (3. 46) can be written 

T N 
H = H. = f ((U - U . l T Q .  (U -U)+M. C.M 

j=1  J j = 1  d j  J J d j  j J J J  

+ XT(A.U.+B.M.+D .s.+G.F.)+ u T 6 . u  - ( ~ 1  ) T P ~ s ~ - ~  1 
J J J  J J 1 J J  J J  J J j ~ - 1  

I 
where 6 = diagonal k x k matrix with elements 

j 

(3. 54) 
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fi = diagonal k x k m a t r i x  with elements 
j 

u 1  and p l = c N  = 0, s l =  SN = 0 

Rearranging (3 .  5 4 )  in a form suitable fo r  the nonfeasible method H 

becomes 
j 

The first-level necessary conditions a r e  

(3. 5 5 )  

(3 .  5 6 )  

Assuming (3 .  28) is linear, the top row of equations in 

(3 .  56) r e su l t  in exactly the first equation of (3. 49). 

equation in (3.  56 )  yields 

The lower right 

j = 2 ,  . . .  , N  

j = 1, . . . ,  N - 1  1 1  -1 T- 
S. = 5 (ij+l) D. X J J J  

(3. 57)  

where the inverses exist since v' and 5 are of f u l l  rank. Taken 

together (3 .  56)  can then be written 
j j 



-1 
)-')D:] X.+G J J J  .F 

- U . ) - A T k -  2 (;.+; ) U j  
j = 2Qj ('dj J J  

with boundary conditions 

X.(t ) = 0 
1 1  

(3 .  58) 

The necessary conditions to be satisfied by the second-level control 

are  

where 

-1 
"I 

- -  

(3.59) 

In this method (3. 59) is satisfied using a gradient controller defined 

by 

where I is the identity matrix and CJ denotes iteration time. 

of the squaring of the constraints, (3. 59) is satisfied by either 

Because 

or 

1 U u .=  s = s. 
J j + l  ~ + 1  

1 U 

j + l  u j=  -s (3.  61) 
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and hence this controller may converge to a false solution a s  shown 

by Bauman. The choice of the sca la rs  a and a greatly affects 

the rate of convergence; however, the lack of a completely general 

procedure fo r  making this choice constitues one of the disadvantages 

6 
1 2 

of the method. 

The necessary condition (3 .  47) for the existence of local 

subsystem minima results in 

P i  ( 0  - i = Pj+l' - .  * , qj+l 

v 5 0  k (3. 62)  

However, i f  the equality in  ( 3 .  62)  holds for any element, the c o r r e -  

sponding coupling constraint would not be satisfied over that period 

of time. Hence s t r ic t  inequality must hold and (3. 62)  becomes 

p.(t) 0 i = . . qj+l 
1 

(3. 63)  

In the case where a different subsystem decomposition is 

performed (e. g . ,  each row of S2 may contain many subsystems) o r  

where the spatial region S2 is of higher o r  lower dimension, the 

above results remain valid. A systematic procedure fo r  writing 

general coupling constraints can be stated but, although precise, the 

notation is somewhat cumbersome. For  example, consider the mesh 

points 6 and 7 of Figure 3. 2 to be a subsystem, say the jth. The 

subsystem matrix A 

a and a The matrix D in (3 .  41) is obtained by consecutively 

writing all elements appearing in a horizontal band through A 

where the ordering is f rom left to right and A .  is excluded. 

this example 

is then the block diagonal matrix containing 
j 

6 7 '  1j 

j 
Fo r  

J 

D I j  =[d,B d 7  0 e7  0 d7 (3. 64) 



45 

The A .  matrix has dimension n.x n. and D 

where m is also the dimension of S 

has dimension n. x m 
J J J  1j J j  

j ' j 
Defining a vector SJ as an ordered set  of inputs to all  sub- 

th 
systems which a r e  outputs f rom the j 

straint  in (3 .  46) can be written 

subsystem, the coupling con- 

where 

(8.u.-sj) J J 

p .  = m. vector Lagrange multiplier 
J J 

(3 .  65) 

8 = m. x n matrix 
j J j  

SJ = m. vector 
J 

The matrix 8. is obtained by scanning a vertical  band 
J 

through A .  f rom top to bottom and consecutively writing 1's where- 

ever  a nonzero element appears (excluding A.).  
J 

For this example 
J 

1 0  

0 1  

1 0  

0 1  
e =  
j 

(3 .  66)  

Note that 8. has elements in the same position a s  DL 
consequence of the symmetry of A .  

This is a J I j "  
Defining 

j the vector S for this example would be  

(3 ,  67)  

(3.  68) 
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j Upon rearranging in the form - (& >TS; , the p vector becomes by 

Once mastered, t h i s  notation permits a mechanistic approach toward 

decomposition regardless of the problem size. 

special attention must be given if the spatial region is non-rectangu- 

l a r  since in this case the A matrix is generally nonsymmetric. 

notation wil l  be further employed in describing the examples in 

Chapter 5. 

Of course some 

This 

The above discussion has considered coupling constraints 

which a r e  one to one, i. e . ,  each element s..  of S.  corresponds to 

one and only one state element, say u 

where (3. 41) is written 

1J J 
Now consider the case k' 

U = A .(u., t)U.+B.M.+S.+G .(u.J tlF.  
j J J  J J J J J J  J 

U.(O) = u 
J o j  

and the coupling constraints become 

(3 .  7 0 )  

s = D.(U. ,  t ) (u j - l+u j+ l  
J J J  

(3 .  71)  

There a r e  now only k coupling constraints; however, these a r e  now 

coupled as seen in (3 .  71) .  

coupling constraint cannot be handled by any of the three controllers 

previously mentioned. If the problem were linear, only the Gauss- 

Seidel controller could be employed; however, no advantage is gained 

over its previous application. Takahara employs coupling con- 

straints of the form (3 .  71)  in solving linear problems. 

feasible method is not excluded because of the number of coupling 

constraints a s  it was previously, but because the right hand side of 

(3 .  71)  contains variables f rom more than one subsystem. 

For  the nonlinear problem posed, this 

59 

Note that the 
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3. 5 Elliptic, Hyberbolic, and Biharmonic Equations 

Parabolic partial differential equations constitute an impor- 

tant c lass  of equations governing transient physical phenomena. 

preceding sections, the distributed parameter systems considered 

were  of this class. 

scalar equation ( 3 . 2 ) .  However, many types of physical phenomena 

are  described by other types of partial  differential equations and it 

is of interest  to examine the optimization of these systems by decom- 

position and multilevel techniques. 

In 

This distinction w a s  clearly made in defining the 

In particular, elliptic partial differential equations describe 

the steady-state behavior of those systems whose transient states 

a re  described by parabolic equations. 

state optimization ar ises .  

f rom Section 3 .  2, such a problem could be posed as minimizing the 

functional 

Thus the question of steady- 

In te rms  of a general notation following 

(3. 72) 

subject to the scalar  partial differential equation side constraint 

G(u(x), m(X), X )  = 0 X €Q (3.73) 

with boundary conditions 

and possibly inequality constraints 

x Enb 

X€Q 

(3.14 

(3. 75) 

The problem (3. 72 )  to (3. 75) corresponds to the case of dis-  

Elliptic equations with control tributed control as described earlier.  

only on the boundary can be formulated in a similar way. The most 

familiar elliptic equations corresponding to these two problems are  
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of course Poisson's equation and Laplace's equation respectively. 

By discretizing (3. 72)  to (3. 75) over the spatial domain S2, the r e -  

sulting equations a r e  in the form considered by Lasdon 

cussed i n  Chapter 2. Although of considerable interest ,  steady- 

state problems a r e  not considered further in this dissertation. 

interesting to note that elliptic equations do not fit into the mathemat- 

ical  machinery developed for  determining exact optimal solutions 

because they a r e  not well-posed a s  discussed by Brogan. 

41  and dis- 

It is 

11 

Optimization problems for the c lass  of distributed param- 

e t e r  systems described by hyperbolic and biharmonic partial differ- 

ential equations a r e  not readily treated by the methods presented in 

this dissertation. 

decomposition requires independent subsystems with as few coupling 

constraints a s  possible. 

this method to distributed parameter systems is largely due to the 

strongly diagonal nature of the A matrix shown above. In the case 

of hyperbolic and biharmonic equations exactly the opposite is true; 

in fact, all elements appear off of the main diagonal. To illustrate, 

consider the simplest hyperbolic equation 

The reason s tems from the fact that successful 

In fact the success achieved i n  applying 

2 2 
P u = k V  u 

t X 

which when written in normal form is 

O vx q:]= k+[vx 0 ] [:] 

(3. 76)  

(3 .  77) 

The A matrix is now composed entirely of c ross  coupling t e rms  with 

no entriesan the main diagonal. 

tion 

Similarly for the biharmonic equa- 

(3. 78) 
2 4 

P t u = - k V x U  
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which in normal form is 

which su f fe r s  f rom the same difficulties. 

(3.79) 



CHAPTER 4 

VARIATIONS OF THE OPTIMAL CONTROL PROBLEM 
F O R  DISTRIBUTED PARAMETER SYSTEMS AND 

THEIR EFFECT ON MULTILEVEL CONTROL 

4. 1 Variations in Problem Statement 

The multiplicity of possible control problems that can be 

conceived for distributed parameter systems is many orders  of mag- 

nitude greater  than for  lumped parameter  systems. The reason 

stems from the higher dimensionality introduced by considering spa- 

t ial  as well as  time dependent variables. This higher dimensionality 

leads to: !a) boundary control, which has no direct  equivalent for  

lumped parameter systems, (b) greater  flexibility in specifying 

admissible controls, (c) greater  flexibility in specifying terminal and 

inequality constraints, (d) a wider choice of meaningful cri terion 

functions. 

e te r  approximation can be formulated for any of these problems. 

However, it w a s  shown in Chapter 3 that a lumped param- 

In 

particular, by discretizing the spatial variations, an n dimensional 

se t  of ordinary differential equations is attained. Obviously n in- 

creases  a s  the desired accuracy of approximation increases and 

approaches infinity in the limit. 

portant because it admits a much larger  body of theory with which to 

This type of approximation is im- 

attack the problem. In particular, only a few optimal control prob- 

lems in distributed parameter systems currently admit to analytical 

solutions while for their  lumped counterparts only a few do not. Of 

course, care  must be taken to interpret the lumped solutions as ap- 

proximations to the exact solution only when that approximation is 

valid. 

The main problem in this discussion then seems to be how to extend 

A case where it is not valid w i l l  be discussed subsequently. 

50 
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present optimization techniques to handle the large systems of equa- 

tions arising in this application. 

level control. 

One possible solution is by multi- 

In the case of the distributed control problem, the approxi- 

mation yields a single control f o r  each mesh point with the only c ros s  

coupling te rms  arising from the approximations of spatial partial 

derivatives. 

cri terion functional yields an independent functional for each mesh 

point, a convenient outcome. Moreover, the approximation of the in- 

tegral  over the spatial domain always yields a summable criterion 

functional for the integrated problem a s  required for the application 

of multilevel control. 

The fact that no such partial  derivatives appear in the 

In order  to  t reat  a large number of coupling constraints 

some convenient notation and a systematic procedure a r e  essential. 

In general no such luxury is available when treating nonlinear equa- 

tions. However, in most distributed parameter systems having 

physical significance, the nonlinearity appears only in a subsystem 

and not in the coupling constraints when treated as a lumped approxi- 

mation. Thus the aspects of the fairly general nonlinear system 

(3. 69) given for treating the coupling constraints systematically, 

(opposed to subsystem optimization) could be treated by the vector- 

matrix notation developed therein. 

(3. 69)  is given f o r  treating the coupling constraints systematically, 

while somewhat cumbersome, has proven useful in practice. 

The general scheme (3 .  64) to 

A s  mentioned above, the problem of boundary control has no 

analog in lumped parameter systems. A few problems of this type 
11, 23 have been attacked using t h e  extended definition of an operator. 

With this technique, the optimal control problem for the system 



2 a u  a u  
a t  
- = ( Y -  

2 
ax 

(4. 1) 

u(x, 0)  = 0 

with boundary control f(t) related by 

u(0, t) = 0 u(1, t )  = f ( t )  

52 

is written as 
0 

au  a 'U I 

at ax 
- = (Y- 4- (Y 6 (x-l)f(t) 2 

u(x,O) = 0 

with homogeneous boundary conditions 

u(0, t )  = 0 u(1, t )  = 0 

where 

(4. 2) 

( 4 . 3 )  

(4.4) 

t d  
6 = - 6  dx 

Apparently the generality of problems which can be treated in this 

manner is severely limited. 

optimal form f(t) of the boundary control in t e r m s  of the adjoint 

variables, numerical resul ts  are not easily obtained especially when 

the control is constrained. 

lem known to the author are given by Sakawa5' (constrained) and 

Brogan' 

successful. 

a r y  control problem, a la rger  class of problems can be formulated 

than by the extended operator technique. However, care must be 

taken to assure that the lumped system yields a n  optimal solution 

which indeed approximates the actual necessary conditions for  the 

distributed parameter system. In Chapter 5, examples are  formu- 

lated in which this is, and is not, t r u e .  

Although this method readily yields the 

The only numerical results for this prob- 

(unconstrained) and the la t ter ' s  numerical efforts were un- 

By considering the discrete approximation to the bound - 

8 

Some of the difficulties involved in obtaining solutions to the 

boundary control problem may be intimately connected with the 
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concept of controllability of distributed parameter systems. 

notion of controllability was first introduced by Kalman 

finite dimensional dynamical systems. 

teadec! by Wang for  distributed parameter systems. Gilbert25 has 

defined controllability for n dimensional linear systems in t e r m s  of 

the system's structural  decomposition. 

shown to be equivalent to Kalman's, a t  least for the case of constant 

coefficient linear systems having distinct eigenvalues. 

The 

for linear 
31 

These ideas have been ex- 
64 

Gilbert's definition may be 

Various qualifying adjectives often appear with definitions 

of controllability, for  example, null-6, completely-null-6, etc. 

Consider the definition of complete controllability on [t  

u(X, t o ) E r  (a) (e. g . ,  a Hilbert space) is said to be completely con- 

trollable on [t  

which wil l  transfer u(X, t ) to any desired final state u (X, t )cr(Q)  

in a finite time t 

the discrete approximation will always be completely controllable on 

[to, tl] while the actual distributed parameter system may not be. 

F o r  example, consider the discrete approximation of a one (space) 

dimensional constant coefficient distributed parameter system 

t 1: a state 
0' 1 

tl] if there exists an admissible control function 
0' 

0 d 1 
It is easily shown that under certain conditions 1' 

U = A U + M  (4. 5) 

where A = n x n tridiagonal symmetric matrix and assume that 

A has distinct eigenvalues. Defining normal coordinates 

u = pY 

Y = p ApY + p - l M  (4. 6 )  

(4. 5) can be written 
-1 

-1 and Gilbert 's controllability criterion requires that p 

zero rows. The columns of p a r e  the eigenvectors of A .  Because 

A is tridiagonal and the desired eigenvectors a r e  to be non-trivial, 

have no 
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it appears that each eigenvector must contain no zero element. 

A is rea l  and symmetric,  p is orthogonal 

Since 
23 and 

-1 T 
P = F  

T Thus p 

Hence, the semidiscrete distributed control problem is controllable 

and the boundary control problem likewise. Suppose however that 

the desired final state contained a finite discontinuity in u (X, t ). d 1 
Then, f rom physical reasoning, it is c lear  that no control exists 

which could attain the desired final state in the distributed parameter  

system; however, such is not the case in the approximate system a s  

seen above. 

illustrate that ca re  must be taken in the formation and interpretation 

of the semidiscrete approximations. 

not only contains no zero rows but indeed no zero elements. 

Although this example is rather extreme, it se rves  to 

By considering problems where the cri terion function is to 

minimize the norm of some terminal e r ro r ,  the question of control- 

ability can be avoided. 

vail in the l i terature when boundary controls a r e  employed. 

table exception is the example by Brogan 

reasonable results were not obtained. 

This type of cri terion function seems to pre-  

A no- 
11 

cited above where 

4. 2 Multilevel Control Considerations 

The multilevel control techniques discussed here a r e  not of 

In this section various advantages and limi- universal applicability. 

tations of several  second-level controllers w i l l  be pointed out, partic - 

ularly as  they relate to the solution of problems arising from partial  

differential equations. In addition, there a r e  three basic limitations 

of the multilevel technique which a r e  implied in Chapter 3 by (3 .  5) 

and (3.6); namely, that (1) inequality and (2) terminal constraints 

a r e  separable between subsystems and (3)  that the terminal time is 
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fixed. 

fur ther  decomposition (a topic f o r  future research).  However, the 

limitation of fixed terminal time seems inescapable since, without 

it, each subsystem could satisfy its terminal conditions at a different 

t ime and thus confound the second-level controller. 

Seemingly, the first two restrictions might be removed by 

A s  pointed out ear l ier ,  the nonfeasible gradient controller 

requires unique subsystem minima with respect to M. and S 

sufficient condition for  convergence. This requirement with respect 

to M. is expected and is usual ly  accounted for in the problem defini- 

tion (e. g . ,  by minimizing a convex function). 

ment of local minima with respect to S , i. e . ,  arbi t rary state 

variables, is extreme and is often not satisfied. 

be physical reasons why the stationary points with respect to S. a r e  
J 

maxima o r  saddle points. 

to enable the correct  sign to be chosen for the constant a .  ( 3 .  60) 

where 

a s  a 
J j 

J 
However, the require- 

j 
Indeed there may 

One reason for  the latter requirement is 

1 

(k*l)- !k’+ a.(u. - ( s  ) 2Yk) 
P i  - Pl 1 1  

(4. 7) 

and k is the iteration number. Because of the saddle value proper- 
6, 45 t ies  arising in the nonfeasible gradient method, i t  can b e  shown 

that a .  is positive i f  local subsystem minima occur and negative if  

local maxima occur. In this as in all  gradient techniques, the con- 

vergence depends rather  heavily on the magnitude of a .  (step size). 

Unfortunately nothing more t h a n  a few general guidelines a r e  available 

for  choosing these values 

upon. 

subsystems, it would seem possible to make an exploration over both 

signs of a and to choose the one which minimizes J(M).  

this approach would quickly become unwieldy as the number of 

1 

1 

1 4  and experience must be heavily relied 

In case a scattering of maxima and minima occurred in various 

However, 
i 
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coupling constraints increased beyond one. 

minima condition can be obtained by using the Newton-Raphson type 

second-level controller derived by Bauman. However, this con- 

troller involves considerably more computation and requires  the non- 

singularity of certain matrices to insure its convergence. It is note- 

worthy that fo r  most problems the sufficiency conditions for  conver- 

gence in each of these methods cannot be guaranteed aprior i  because 

of difficulty in  evaluating the conditions. 

f o r  convergence of the nonfeasible gradient controller is that the 

initial guess p 

the optimum value p which satisfies the coupling constraint. How- 

ever, one has no physical intuition regarding Lagrange multipliers 

and hence this choice is often difficult to make. 

nonfeasible method was attempted for the minimum effort problem 

where the system was described by the onedimensional diffusion 

equation. 

resulted in two coupling constraints. 

sponding to the state variables which appeared in the coupling con- 

straints were described by the characterist ic equation 

2 

A relaxation of the local 

6 

An additional requirement 

0 of the Lagrange multipliers be sufficiently close to 
* 

In particular the 

Two four-dimensional subsystems were employed which 

The dominant roots co r re -  

(4. 8) s + f(p;h) = 0 

w h e r e  h = A x  is a parameter. Fo r  negative values of p (as required 

by (3.63)) between zero andsome minimumvalue, p 

of (4.8) were rea l  and the response was monotonic a s  expected. 

ever, for  values of p l ess  than p 

the response was oscillatory, an unacceptable result for the diffusion 

equation. Note that p 

changes with the number of mesh points employed. 

vergence was never obtained for this simple example and the non- 

feasible gradient controller is therefore not considered acceptable for 

this application. 

(h), the roots min 
How- 

(h) the roots wereimaginary and min 

(h) depends explicitly on h and therefore min 
Acceptable con- 



57  

In deriving the feasible gradient controller, the coupling 

constraints are attached to  each subsystem and are actually satisfied 

by the first-level necessary conditions (2. 21). According to Macko, 

the only limiting condition in applying this second-level controller is 

that each subsystem have at least as many degrees of' freedom as the 

number of coupling constraints attached to  it. It is easily seen that 

this restriction cannot be satisfied for the partial differential equa- 

tion application discussed here, except possibly for systems having 

only one space dimension. 

having distributed control and no inequality constraints. 

space domain be broken into n internal mesh points and N subsys- 

tems  where the j subsystem has  dimension n and 

45 

Consider a one dimensional system 

Let the 

t h  
j 

N 
n =  n 

j = l  j 
(4. 9) 

th  For the distributed control problem, the j subsystem has n con- 
j 

t ro l s  and therefore n.  degrees of freedom. Naturally if  active 

inequality constraints a r e  present, n. is reduced appropriately. 

Using the decomposition (partitioning) shown in Chapter 3 ,  it  is c lear  

that the total number of coupling constraints is 2 ( N - l )  where a gen- 

eral subsystem contains a t  most 2 such constraints. Hence the 

requirement for  using a feasible second-level controller in this case  

is that 

J 

J 

n L  2 
j 

(4.10) 

F o r  a system having two space dimensions and again using the de- 
th  composition shown in Chapter 3 ,  any subsystem, say the j , has 

at most 2( l+n . )  coupling constraints and n. degrees of freedom. 

Similarly for 3 space dimensions, the number of coupling constraints 

in the j Hence the feasible method 

J J 

th  
subsystem is given by 2(1+2n.). 

J 
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cannot be used for partial  differential equations having more  than one 

space dimension when the decomposition is a s  stated. Further,  it 

is considered unlikely that any other fo rm of decomposition w i l l  

greatly a l ter  this conclusion. Because of this lack of generality, and 

because of the added difficulty, discussed in Chapter 2, in solving the 

necessary conditions since the control does not appear explicitly in 

the coupling constraint, the feasible gradient controller is not recom- 

mended f o r  these applications to distributed parameter systems. It 

should be noted, however, that, when applicable, this controller re- 

quires initial guesses of coupled state variables only. 

considerable advantage since one can usually estimate these variables 

f rom physical considerations. 

This is a 

The Gauss-Seidel type second-level controller is extremely 

simple and does not suffer f rom the chief difficulties of the gradient 

techniques; namely, choosing the magnitude and sign of the step s ize  

a . .  

iterative techniques and the Gauss-Seidel method in particular were 

discussed i n  Chapter 2 and were found to be rather  restrictive when 

applied to linear dynamic systems. In practice, however, the con- 

vergence of the Gauss-Seidel second-level controller was extremely 

good; in fact the convergence of this method w a s  not the limiting 

factor on any of the problems attempted. However, one potential 

limitation a r i ses  f rom the fact that the spectral  r a d i u s  for  the static 

Gauss -Seide1 procedure is inversely proportional to the square of 

Ax, the spatial discritization interval. Thus a s  Ax is decreased, 

the convergence becomes slower. 

with the G a u s s  -Seide1 second-level .controller and is reported in 

Section 6. 3 .  

Various sufficiency conditions for the convergence of general 
1 

66 

This phenomena w a s  also observed 
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It is conjectured that additional improvement; in the conver- 

gence ra te  could be obtained by employing the obvious generalization 

of the successive overrelaxation scheme for  solving the discrete 

systems of equations arising from elleptic partial differential equa- 

tions. 

G a u s s  -Seide1 method for  solving s imilar  problems. 

It is known that this method speeds convergence over the 
66 

In order  to  u s e  multilevel techniques on the boundary con- 

t ro l  problem posed ear l ie r  further restrictions are required. 

in this case there is no Longer a control at  each mesh point, it is 

quite possible that a subsystem may arise which contains no control 

variable. 

inated. 

ling constraint is altered to satisfy the necessary conditions (3. 47) 

for  local subsystem minima. 

used only if  the state terminal conditions a r e  free.  

is present, the two-point boundary value problem could otherwise not 

be solved. In this case, however, the state variables can  be inte- 

grated forward and the adjoint variables integrated backward. 

example is one of the few where the Gauss-Seidel controller is not 

always applicable. 

free is further considered in Chapters 5 and 6. 

Since 

The feasible gradient controller is thus immediately elim- 

The nonfeasible gradient controller can be used if the coup- 

The Gauss-Seidel technique can be 

Since no control 

This 

This problem with the state terminal conditions 

Recently, optimal control problems involving inequality con- 

s t ra ints  which are functions of the state variables only have received 

considerable attention. 

that the adjoint variables possess discontinuities a t  points where 

they enter onto and/or  exit from the constraint boundary. 

numerical evaluation of this discontinuity usually involves consider- 

able effort. An alternative approach to problems of this type which 

8,13 In such problems it has been shown 8, 13, 21 

The 
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yields approximate results when on the constraint boundary is the 

penalty function approach discussed by Kelly. 
3 4 , 3 5  

In treating a distributed parameter  system having a state 

X+W (4. 7) 

to consider the inequal- 

inequality of the form 

u (X) 5 u(X, t) 5 u (X) min max 

by decomposition, it is especially convenient 

ity constrained variables u(Xi’ t)(Xi E rc(fl)) as pseudo-control var i -  

ables. 

applying to inequality constrained control variables. 

variables a r e  known to be continuous when the inequality constraints 

contain control variables explictly, the treatment of s ta te  inequal- 

ities a s  pseudo-controls is not expected to yield exact results; in 

particular, discontinuous adjoint variables. This is also the case for  

the penalty function approach and the two methods are indeed s imilar .  

A comparison of the two methods is given in Chapter 5 where a par-  

ticular example is formulated and solved. 

-. 
The problem can now be handled by the (simpler) theory 

Since the adjoint 

The possibility of discretizing the t ime variable in addition 

to the space variables has not yet been mentioned. 

set  of algebraic equations, albeit very large, can  then be treated as 

a static system. If the system and the cri terion function are  linear, 

the technique of linear programming can be applied along with its 

own decomposition theory as developed by Dantzig.20 If either the 

system or the cri terion function o r  both are nonlinear, the static 

optimization method discussed ear l ie r  can be applied. An example 

of this theory applied to a simple linear dynamic system discretized 
42 6 in time is given by Lasdon. Bauman discusses the t ime decompo- 

sition of an optimal trajectory problem containing discontinuities 

along the trajectory; however, in this case, the independent time 

The resulting 
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segments are treated continuously. 

may be feasible for  distributed parameter systems having a short  

t ime domain, no particular advantage is anticipated and hence this 

method will not be pursued further. 

Although a t ime discretization 

. 

One of the potential arguments for  employing decomposition 

and multilevel control is that each subsystem can be solved by a 

technique which is best suited to it. 

subsystems, it may be possible to write the optimal solution in closed 

form 

two-point boundary value problem during each iteration. 

linear subsystems, an iterative procedure for solving the two- point 

boundary value problem is inevitable; possible methods include 

(a) the gradient technique which iterates on the control, (b) the 
58 Newton-Raphson technique 

ditions, and (c) quasilinearization which i terates  on the state and 

adjoint solutions themselves.  In any case, when large problems 

having many subsystems a r e  involved, it is important that the sub- 

systems converge readily from arbi t rary initial guesses since other- 

wise it is necessary to  interrupt the iteration between the subsystems 

and the second-level control. 

resume at  the point where the cyclic process was interrupted. 

convergence of the subsystems for any of the methods mentioned 

above depends on the initial guesses and the degree of the subsystem 

nonlinearity. 

Particularly in  the case of linear 

18 
,and then just perform the integration rather  than solving a 

For non- 

which i terates on the adjoint initial con- 
30 

When this occurs i t  is inconvenient to 

The 

For the computational work done here, quasilinearization 

w a s  used for  solving al l  subsystems. 

were linear and satisfied the boundary conditions for  the s ta te  var i -  

ables and were zero for the adjoint variables. N o  convergence dif- 

ficulties were encountered in either l inear o r  mildly nonlinear 

In a l l  cases  the initial guesses 
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problems when sufficient accuracy in the integration process  could 

be maintained. 

linearization has the disadvantages of requiring more storage than 

some of the other methods and of being ra ther  inflexible toward 

changes in the integration step size. 

This point is discussed fur ther  in Chapter 6. Q u a s i -  



CHAPTER 5 

FORMULATION OF SOME EXAMPLE PROBLEMS 

5. 1 Introduction 

In this chapter some examples of optimal control problems 

will be formulated using multilevel techniques. 

f r o m  this group have been solved numerically and these results a r e  

presented in Chapter 6. In Section 5. 4 a problem involving inequal- 

ity constraints on th,e state variables is formulated and compared 

with the penalty function approach. 

law for several  boundary control problems is formulated analytically 

and these results are compared with those obtained from solving the 

lumped parameter approximation. 

w i l l  be formulated in  te rms  of fourth-order systems. 

Selected problems 

In Section 5. 5 the optimal control 

In these examples the subsystems 

5. 2 Minimum Effort, Fixed End, Linear Problems 

Consider the minimization of 

subject to a side constraint given by the one-dimensional diffusion 

equation (with a forcing funct ion m)  
n 

with boundary conditions 

u(0, t) = u(1, t )  = 0 

and initial conditions 

u(x,O) = u (x) 
0 

(5 .3)  

(5. 4) 

6 3  
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It is desired to attain the terminal condition 

u(x,t,) = u p  (5. 5) 

1' at a given time t 

The semidiscrete approximation to this problem written in 

the decomposed subsystem form given by ( 3 .  41) and ( 3 . 4 3 )  can be 

stated as minimizing 

subject to the side constraints 

(5. 6)  

0 .  = A . U .  + M .  + D.S 
J J J  J ~j 

(5. 7 )  

U.(O) = uoj (5. 8) 

(5 .  9) 

J 

3 1 j  
U.(t,) = u 

j = 1, . . . ,  N 

Making the (arbitrary) choice of fourth-order subsystems for con- 

venience, the A; and D; matrices can be defined explicitly a s  
J J 

A . =  k 
J 

- 2 1 0 0  

1 - 2  1 0  

0 1 - 2  1 

0 0 1 - 2  

0 :I 1 

and 
J 

D = k  1 

CY k = -  
h2 

h = Ax 

1 

0 

0 

0 

DN= k 
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Consider the use of a nonfeasible second-level controller 

where each t e r m  of the coupling constraints is squared in order  to sa t -  

isfy (3.  47). The coupling constraints can then be written a s  

(e.u.>Tp. e.u - (sjy p.sj J = 0 
J J  J J j  

(j = 1, . . . , N) 

1 

e j =  r o o 0 1  o o o 1 

where 

(5. 10) 

= [ O  0 0 1) 

e = [ i  o o 0 1  
N 

The first-level necessary conditions follow from a development s imi-  

l a r  to ( (3 .54)-(3.  58)) and can be written 

where 

- 2  

1 

0 

L 

1 

- 2  

1 

0 

0 

0 

0 

0 

2 = B . Z  
j J J  

z j = [ u j , A j r  

j = 1, ..., N (5. 11) 

- 2  1 

1 - 2  

0 
h 

0 -- 
2a 0 

h )  0 0 0 (+-- 2 a  I 

2pj+1 
0 0 2 -1 0 0 

0 0 -1 2 -1 0 

0 0 0 -1 2 -1 

2 P 2  
0 -2 0 0 -1 2 k 
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1 1 2 1 
j j -1  j + l  

Forj=l ,  p = O  and p =m;and for  j = N ,  pj = O  and p =oo. Note 

that B.  is a t ime-varying matrix.  The boundary conditions fo r  

(5. 11) are 
J 

zU(0) = U.(O) = u 
J J 0 j 

r r  

zU(t,)= u (t )=  u 
J j 1 1 j  

I ..e necessary condit,ms ((3. 59)-(3. 60)) to  be satisfiec 

second-level controller a r e  then 

(5.12) 

by the 

(5. 13a) 

(5. 13b) 

where for  j = 1, (5. 13a) disappears and for j = N ,  (5. 13b) disappears.  

A s  in  (3. 60) ,  p .  and p .  are required to  be negative. 
1 2 
J J 

Treating the same problem, but using the Gauss-Seidel 

second- level controller, the coupling constraints can be written 

(0.u.- SJ)  = 0 (j = 1 , .  . . , N )  (5. 14) 
’j J J 

where 
T 1 2  

Pj  = [Pj J P j ]  

and 8. is the same  as in (5. 10).  The necessary conditions to  be 

solved a t  the f i r s t  level now follow from ((3. 48)-(3. 49))and can be 

written 

J 

2. = B . Z .  + P (j = 1, ..., N )  (5. 15) 
J J J  J 

where z .  = [Uj, A j ] T  
J 
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B. = k 
J 

-2 

1 

0 

0 

0 

0 

0 

0 

1 

1 0 0  

-2 1 0 

1 -2 1 

0 1 - 2  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

-1 
2k 

0 

0 

0 

2 

-1 

0 

0 

2 1 

j s ’  - p J ’  

0 

-1 
2k 

0 

- 

0 

-1 

2 

-1 

0 

0 

0 

- 1  
2k 

0 

- 

0 

-1  

2 

-1 

rn 

2 ’  
I O ,  - P j ]  

0 

0 

0 

-1 
2k 

0 

- 

0 

-1 

2 

Note that P. is a vector whose elements a r e  parameters  in (3 .  15)  
J 

s ince both S. and p. are determined by the Gauss-Seidel second- 

level controller. In this case B.  is a constant matrix. 
J 

J J 

The second-level necessary conditions (3. 50) can then be 

written explicitly a s  

1 4  
s .  = u 

J j - 1  
2 1  
j j+ l  

s = u  

4 
p: = k A. 

1 
= kh. 

’j j i l  

J - ’  
2 

(5. 16)  

= O .  The Gauss-Seidel procedure 1 1  2 2  = 0 and s - 
N -PN 

where s - 
1-1 

detailed in Chapter 3 is shown schematically in Figure 5. 1 for  three 
2 2  2 subsystems. The only initial guesses required are f o r  s 1’ P1’ S 2’ 

2 
and p- 2’ 
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GAUSS-SEIDEL PROCEDURE F O R  N=3 

FIGURE 5 .1  



5. 3 A Nonlinear Problem 

Consider the minimum effort problem of Section 5. 2 with 

a side constraint given by the nonlinear diffusion equation 

2 
- au(xJ t, = cy u(x, t)  a u(x# t, + m(x, t)  (5. 17) 

with boundary, initial, and terminal conditions given by ((5. 3)-(5. 5)). 

The semidiscrete approximation of (5. 17)  written in terms of fourth- 

o rde r  subsystems is then (suppressing the j subscript  for  notational 

convenience) 

2 
ax at  

2 
bl = k ( -2ul  +u1u2)+ k u l s l  + m 1 

2 
u 2 = k ( u u  1 2  - 2 u + u u )  2 3 2  + m  2 

(5. 18) 
2 

3 
U = k ( u 2 u 3 - 2 u  + u u  ) + m  

3 3 4 3  

4 U = k  u u  - 2 u  + k u s  + m  4 ( 3  4 4 ”)  4 2  

with boundary conditions given by ((5. 8)-(5. 9)). The necessary 

condition 

a H  

a M  
J = o  

j 

is satisfied by 

(5. 19) 

a s  w a s  the case  in (5. 15). 

the final first-level necessary condition 

Writing the coupling constraint as (5. 14), 

aH 
-J 

au A .  = 

j 
J 

becomes (again suppressing the j subscript)  
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x1 = k[ (4u l  -u2+s1)X1 

- u  x ] xz = k (  - u  1 1  X + ( 4 u 2 - u  1 -u3)X2  3 3  

- u4x41 3 I 2 2  3 2 4 3  X = k  - U  X + ( 4 ~  - U  - U  ) A  
(5. 20) 

X 4  = k - U  X +(4u4-u3  - s 2 ) A 4 ]  - p2 
I 3 3  

Equations ((5. 18)-(5.  20)) can be written in the form 

Z = B.(Z. )  Z .  + C . ( Z . )  P.  (5. 21) 
J J J J  J J J  

where Z .  and P. are  defined in (5. 15) and B. and C .  are  determined 

f rom ((5. 18) -(5. 20)). Using the Gauss-Seidel controller, the second- 

level necessary conditions yield values for  the parameter vector 

J J J J 

P. ; namely, 
J 1 4  s = u  j j - 1  

2 1  
1 j + l  s = u  

= ku4 A4 
'j J-1 j - 1  

p; = k u l  j t l  A1 j + l  

1 

(5. 22) 

= 0. where s l -  = 0 and s - 
a r y  value problem given by ((5. 18)-(5.  20))cannot be solved in 

The subsystem two-point bound- 
1 2 2  

1- '1 N - 'N 

closed form a s  w a s  the case with linear subsystems. 

method of quasilinearization (described in Chapter 6) w a s  used to 

solve this problem. 

ditions f o r  this problem are  considerably more complex than in the 

linear case,  the second-level necessary conditions are  only slightly 

different. Hence one expects the convergence properties of the 

Gauss-Seidel controller to be s imilar  for  linear and mildly non- 

linear problems. 

ra te  w a s  observed. 

The iterative 

Note that although the subsystem necessary con- 

For this example no degradation in  the convergence 
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5. 4 A State Inequality Constrained Problem 

Consider the minimum effort problem of Section 5 .  2 subject 

to the state inequality constraint 

4 u 3 c(t) 
j 

where c(t) is a known function of time 

conditions ( 5 .  16)  require that 

4 1  
j j + l  

u = s  

and hence (5. 2 3 )  can be written 

( 5 .  2 3 )  

The second-level necessary 

( 5 .  24) 

( 5 .  2 5 )  

The inequality ( 5 .  2 5 )  is now on a (pseudo) control variable of sub- 

system (j - +1) and can thus b e  conveniently handled by the method due 
" 60 

to Valentine. Consider the constrained pseudo-control to be in  the 

k subsystem. Decomposing and using a G a u s s  -Seide1 second-level 
t h  

controller, the Hamiltonian c a n  be written 

m 

( 5 .  2 6 )  

where = [ 1 0 0 01 and f is a real slack variable. Note that 

(5. 25) has been converted to a n  equality constraint such that (5. 2 5 )  

is satisfied when 5 is real. The first-level necessary conditions 

for  subsystem k now yield 

d 
5 
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= A  U + M k + D  S 
'k k k k k  

1 M = - - - A  
k 2 k  

2 T 5 = p  s - c  k k  

2u5 = 0 

The second-level necessary conditions are given by 

T k 
D k \ - p  - p k v = O  

(5. 27)  

(5. 28a) 

(5. 28b) 
k ekuk - s  = o 

9 
The Clebsch necessary condition required that v2: 0. If u = 0, 

(5. 25) is satisfied by s t r ic t  inequality and the solution proceeds as 

in Section 5. 2 .  

equality and (5. 28a) requires  the determination of v . 

accomplished by using a gradient method to determine v when on the 

boundary. 

However, i f  5 = 0 (v > 0)  , (5. 25) is satisfied by 

This  can be 

The variation of H with respect to v is, from (5. 26) 

6H = (c - PZSk) 6 v  (5. 29) 

45 
By Macko's 

with respect to M corresponds to maximizing H(v, p ,  M, S) with 

respect to v (and p ) .  Hence av in (5. 29) can be chosen as 

saddle value proof, it is seen that minimizing J(M) 

bv = a(c - p k  T sk) a > o (5. 30)  

until the second level has con- 
T Since Pk Sk does not equal u 

verged, it is convenient to wri te  (5. 30) as 
k- 1 

4 
6v = a(c - u k - l )  a > 0 (5. 31) 
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The gradient controller is then defined by 

do a >  0 (5. 32) 

Solving (5. 32) fo r  v and substituting into (5. 28a) yields for  the first 

element of p 
k 

a >  0 (5. 33) 
m 

Ax 1=1 
= 5 < - .z a(c - k 2  - 

'1 - 'k-1 

where (i) is the iteration index for the second-level controller and 

m is the "current" iteration. 

is obtained during one iteration through the second -level controller. 

Substituting (5. 33) into the appropriate equation in (5. 21) gives 

By using (5. 33) one iteration on v 

34 
In solving this problem by the penalty function approach 

a new state variable P is defined by 

4 
P = K  C - u  if U k W l  2 c k- 1 

P = O  if u4 > c 
k-1 

(5.35) 

P(0) = 0 

wh.ere K is an arbi t rary constant. 

satisfied along the entire path only if  P(t ) = 0. 

the adjoint equation corresponding to (5. 34) follows from a straight- 

forward application of the maximum principle 

The inequality (5. 23) w i l l  be 

Using this approach 
1 

54 as 

where X 
and must be determined iteratively by trying to  drive P(t ) to zero. 

is the constant adjoint variable corresponding to (5. 35) P 46 
1 
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4 
k- 1 
This is easily seen 

In general either (5. 3 4 )  or  (5. 36)  wil l  bring u 

to the boundary but wi l l  not attain it exactly. 

f rom these equations since the e r r o r  t e r m  (c - u 

going onto o r  off of the boundary, and thus the discontinuities in 

arbi t rar i ly  close 

) is zero when k- 1 

8 (0) indicated by the general theory a r e  not obtained (assuming v c- 1 
contains no impulse function). 

5. 5 Some Boundary Control Problems 

A s  w a s  remarked ear l ier ,  some ca re  must be exercised in 

the formulation and solution of boundary control problems by semi-  

discrete techniques. 

which the optimal boundary control function either differs o r  remains 

unchanged when the discretization is performed on the original sys-  

tem equation o r  on the necessary conditions for  optimality. 

Examples a r e  presented in this section for  

Consider the problem of minimizing the functional 

J(m) = f k,(x) - u(x, t ) dx + c f1  f2(t) dt 
0 1 l 2  0 

subject t o  the side constraints 
n 

a u  a ‘u 

at ax 
_ -  - C Y -  2 

with boundary conditions 

u(0, t) = 0 u(1, t )  = f ( t )  

and initial conditions 

u(x, 0) = uo(x) 

( 5 . 3 7 )  

(5 .  3 8 )  

(5. 3 9 )  

(5.  4 0 )  

In ( 5 . 3 7 ) ,  u (x) is a given function. Reformulating in semidiscrete 

form ((3. 24 ) - (3 .  25)) and decomposing yields 
d 

N 
J . (M. )  J(M) 

h 
8 

J ( M ) =  - = 
j=l J J  

(5 .  41)  



where 

and 

J j = [  u dj - U ( t I T U  j 11 d j  - U ( t )  j 1 

j = 1, . . . ,  N - 1  

(5. 42) 

(5.43) 

The Side constraints become 

and 

where 

U .  = A.U. t D . S  
J J J  J J  

j = 1, . . . ,  N-1 

U.(O) = uoj 
J 

j = 1 , .  . . ,N-1  

= A  U + D  S +BNf 'N N N  N N  

u p  = UoN 

T BN = [0  0 0 k] 

(5.44) 

(5. 45) 

2 
and k = a / h  

Note that (5. 42) and the f i r s t  t e rms  in (5. 43) depend on values of 

U(t,) only. 
9 the Mayer formulation of the optimization problem. Equation 

(5. 43) can be written as 

The necessary conditions are  obtained in this case f rom 

where 
(5. 47) 

c 2  6 = < f  (t) 
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The Hamiltonian 

N - 1  
H = C  

j = l  
T 

then becomes 

(5.4%) 

+ % ( A  u + D  s + B  f ) + P N  T (eNuN-sN) 
N N  N N  N 

where all matr ices  are a s  defined in (5. 7) and (5. 10). 

the Mayer theory then yields the first-level necessary conditions 

(5. 44), (5.45), (5. 47)  and 

Application of 

i = o  
4 

j = 1, . . . ,  N T T X. = - A .  x . - e  
J J J j p j  

with terminal conditions 

(5.49) 

(5. 50)  

j = 1, . . . ,  N 

The second-level necessary conditions a r e  (using the Gauss-Seidel 

controller) the same a s  (5. 16) .  

For  comparison the necessary conditions were also 

determined by discretizing the necessary conditions determined from 

an analytical approach. This approach u s e s  the extended definition 
23 11 and applied by Brogan. of an operator a s  discussed by Friedman 

The criterion functional is given by 
1 L 

J (m) = f [ u - u (x, t )] + ti (x - 1) c lL f (t) dt 1 dx 
0 

d 
0 

(5. 52) 

and the side constraint is written with homogeneous boundary con- 

ditions as 



1 
2 

a u  

ax 
- -  a u  - cy - t cy 6 (x -1) f ( t )  

2 a t  (5. 53) 

U ( X , O )  = uo(x) 

u(0, t )  = u(1, t )  = 0 

Then the Hamiltonian 

2 H = ( l a ( . l ) c f  2 ( t ) + X T ( c y T  a u  + a a ' ( x - l ) f ( t ) )  

ax 

is minimized over f by requiring 

f f {26(x - l ) c f+cy6  (x- l )X(x, t )  
0 

23 o r  using the appropriate identity 

(Y dX (1, t )  
2c dx f(t) = - - 

The adjoint system is 

- -  a x -  a 2 X  
at 2 

ax 

(5. 55) 

(5. 56) 

(5. 57) 

a l so  having homogeneous boundary conditions and a final (time) value 

of 
X(x,t 1 ) = -2(ud(x)-u(x, t  1 1) (5. 58) 

Discretizing (5. 56) yields 

X ( l  - h, t)  f(t) = - 2ch (5. 59) - C Y  

a result identical to (5. 50). 

function in (5. 53), the nonhomogeneous form ((5. 38)-(5.  39)) can be 

used. 

to be identical to that obtained previously ((5. 44)-(5. 51)). 

To avoid approximating the doublet 

The semidiscrete form of the analytical solution is easily seen 

In most cases, however, slightly different expressions for 

the optimal control law a r e  obtained from these two approaches. 
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Consider for example the problem discussed above ((5. 37)-(5. 38)) 

but with boundary conditions given by 

(5. 60) - u(0, t )  = 0 au(ls ax t, = f ( t )  - u(1, t) 

Discretizing (5. 60) along with (5. 38) yields in  one place of (5. 45) 

U N =  ANUN+DNSN+BN (&-) ( h f + u i )  (5. 61) 

u ~ ( o )  = 

The corresponding control law is given by 

4 
= 2ci1(Y+h) h 

and the adjoint equation is 

The corresponding control law is given by 

4 
= 2ci1(Y+h) h 

and the adjoint equation is 

(5. 62) 

The analytical formulation of this problem requires  the 

minimization of (5. 52)  subject to the s ide constraint 

(5. 63) 

having homogeneous boundary c ond i t  ions 

(5. 64) 

(5. 65) 

Writing the Hamiltonian as before requires  for  a minimum that 

f [ 2 6 ( x - l ) c f + a X ( x , t ) 6 ( x - l ) ]  dx = 0 (5. 66) 
0 

or  f(t) = - 2L X(1, t )  (5. 67) 
2c 
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I .  

The adjoint system is now the same as (5. 57)  but with boundary con- 

ditions given by 

= o  (5. 68) a m  t)  X(0,t) = 0 - 
ax 

Discretizing (5. 67)  and (5. 68) yields 

(5. 69) 
CY f ( t )  = - - X(l-h, t )  
2c 

a result different f rom (5. 62). 

approach, a lso differs f rom (5. 63) and is given by 

The adjoint equation using this 

(5. 70)  

All  other equations resulting from the different approaches are  ident- 

ical (except (5 .  61) which differs by the amount that f differs). 

Consider finally the boundary control problem of minimizing 

J (m)  = f ' [ ( pd(x ,  t) - u(x, t)  l2 dx + c  f 
0 

(5. 71) 

subject to  side constraints given by ((5. 38)-(5. 40)). The first-level 

necessary conditions for  this problem a r e  identical to ((5. 44)-(5. 50)) 

except that the adjoint system is given by 

J J  J J  'I k ( u . - U  ) + A .  T A . + &  p 

J dj 
A.  = - 

J 
(5. 7 2 )  

A ( t  ) = O  j = 1, ..., N 
j 1  

The second-level necessary conditions are again given by (5. 16) .  

Other problems could be considered such as the minimum 

terminal  e r r o r  problem ((5. 37) with c = 0) with inequality constrained 

control. The semidiscrete  solution to this problem yields the 



expected bang-bang result which ag rees  with the analytical formula- 

tion. 

inequality constrained control. 

similar to the result  obtained with distributed control and these 

problems are formulated in the next section. 

types of problems a r e  possible. 

Alternatively the problem of (5. 37)  could be treated but with 

The solution to  these problems is 

Obviously many other  

5. 6 Some Problems Involving Control Ineaualitv Constraints 

Consider the distributed control problem of minimizing 

J(m) = f' l(ud(x) - u(x, t )y + c s",2(xJ t )  dt dx 1 
0 I 0 

subject to the side constraints ((5. 2) - (5 .  4)) and 

mo(x) 5 m(x, t) 5 mo(x) 

(5. 73)  

(5. 74) 

Decomposing in the standard way, the cri terion functional (5. 73)  

becomes 

JO= f . -U. ( t  )IT[U - U  (t )] + c  c1 MTM.dt  (5. 75) 
h j = l  dJ J dj j 1 J J  

and the inequality constraints (5. 74) yield 

(M. - M . ) ?  0 
J OJ 

(5. 76)  
(MY - M.) 2 0 

J 
60 Using Valentines, technique, the inequalities (5. 76) can be  changed to 

equality constraints and appended to  the Hamiltonian which is then 

given by 
T T N 

H = IcM.  M.+X. (A.U.+D.S.+M.)+p, '(e, 'Mj-Sj) (5 .77)  j = l l  J J J J J J J .I 

- (M.- M .)%. (~0 - M ~ )  + V j  T -  Y j  V j l  I 
J O J J J  
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where 

; = n. dimensional diagonal matrix of Lagrange multipliers 

Minimizing (5. 77) with respect to Mi gives 
J J  

(5. 78) 

and the Clebsch condition requires that each element (v.) of v. be 

greater  than o r  equal to zero. 
J J 

Two conditions can therefore a r i se :  

o r  

(1) v = 0 and 
j 

1 
m . =  - - h 

J 2 C  J 
( 2 )  v .  > 0 and 

J 
m = m  if A .  > - 2 c m  

J 0 j J 0 j 

J J J j 
0 0 m. = m if A. < - 2 c m  

(5. 79)  

(5. 80) 

j =  1 ,..., N ;  i = l ,  . . . ,  n 
J 

where the element subscript i has been suppressed for  notational 

convenience. 

(5. 78). 

results of this chapter. 

Equations (5. 79) and (5. 80) follow immediately from 

The remaining necessary conditions follow from the ear l ier  

An alternative problem would require the minimization of 

(5. 73) with c = 0 and side constraints given by ((5. 2)-(5. 4)) and 

The Hamiltonian for this 

where the inequality constraint 

IM.1 5 Mo 
J J 

(5. 81) 

(5. 82) 

(5. 83)  
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must be satisfied 

yields 

elementwise. The minimization of H to 

0 
m = -m. sgn X 

j J j 

M. then 
J 

(5. 84) 

j = 1 , . . . ,  N ; 

where the element subscript i has again been suppressed for nota- 

tional convenience. 

i = 1 , . . . ,  n 
j 



CHAPTER 6 

NUMERICAL PROCEDURES AND RESULTS 

6. 1 Subsystem Optimization 

One of the advantages of the multilevel approach to optimi- 

zation is that the various subsystem optimizations can proceed using 

different techniques. For example, l inear subsystems could be 

solved in closed form, 

iterative methods such a s  second-variational techniques, 

gradient methods or quasilinearization. 

to provide the generality required to  solve a number of l inear and 

nonlinear examples, the method of quasilinearization' w a s  used for  

each subsystem in all computational examples considered here. 

18 while nonlinear subsystems would require 
10, 33, 58 

However, in o rde r  3 0 ,  47 ,  51 3 4  

Quasilinearization is a n  iterative technique which satisfies 

the boundary conditions and the maximum principle (along a given 

trajectory) exactly and i terates until the system differential (state 

and adjoint) equations are satisfied. 

depends upon the initial guesses of the state and adjoint solution 

t ra jector ies  and, when obtained, the convergence is quadratic. 

Consider the two-point boundary value problem given by 

Convergence of this method 

51 

j ,  = f(y, t) (6. la)  

(6. l b )  
n 
2 
- Y i W  = Y o i  3 y.(t 1 ) = yli  , i = l , .  . ., 

where y is an n vector of state and adjoint equations with boundary 

conditions on (say) the state variables. The quasilinearization solu-  

tion proceeds fo r  the k iteration by solving the linearized systems th  

'Several subroutines were already available f rom the work of 
51 Paine. 

83 
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and 

i k+l = f(y J t ) +  (a,$ - (Zk+l -yk )  

yk+l (0) = I 

where 

y k+l = z  k+l + yk+i CY k+l 
(6. 4) 

yo = initial (guessed) solution which satisfies 
(6. lb )  

af = n x n  matrix - 
a Y  

Y = n x n  matrix 

CY = n dimensional constant vector 

The terminal boundary conditions are always satisfied fo r  (6. 2)  by 

choosing CY k+l such that 

A s  the iteration proceeds the solution to (6. 2) converges to the solu- 

tion of (6 .1) .  A s  a check on the numerical accuracy and to conserve 

rapid-access storage, it is convenient to determine y (t) by re-  

integrating (6. 2)  with initial conditions ~ ~ " ( 0 ) .  If the final values 

(t,) compare favorably with the desired final values yli 
'i 
(i = 1, . . . , -), then numerical accuracy has been preserved. 

that quasilinearization requires considerable storage along the 

entire trajectory (e. g. y , f(y t), 5 (ykJ t)) which may become 

k+l 

k+l 

n 
2 Note 

k k 
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inconvenient f o r  large problems. 

should be investigated . 
In these cases,  other techniques 

For  the numerical work considered here, the state vector 

w a s  of fourth order.  

pass  of quasilinearization w a s  40 (8 in (6.  2 )  and 32 in (6. 3)) and in 

the second pass 9 (8 in (6. 2) plus the cri terion functional). The 

method of integration used in all cases w a s  the modified predictor- 

The number of equations integrated in the first 

corrector  scheme due to Hamming2' This method is known to be 

computationally stable 
' 55 

in the scalar case i f  

.65 
A t <  - (6. 6)  

1 fy I 
Hamming states that this method may become relatively unstable as 

f 

ferential equations are known to the author. However, f rom the 

numerical work done here  it is clear  that some relation of the gen- 

era1 form of (6. 6 )  must exist. In particular since the factorrr/(Ax) 

is present in a l l  tridiagonal terms of the matrix f 

to reduce A t  as the spatial increment Ax was refined in order  to  

preserve the integration accuracy. 

is that it is not self-starting. 

given by Ralston 

tageous side, the Hamming method is a fifth order  method (trunca- 

tion e r r o r  proportional to the fifth derivative of the solution) and is 

relatively fast, requiring only two evaluations of the derivative for  

each step in the integration. 

easily determined. 

becomes very large. No analogous results for  systems of dif- 
Y 

2 

it w a s  necessary 
Y' 

Another drawback of this method 

In this work the iterative technique 
55 w a s  used as a starting procedure. On the advan- 

In addition, the truncation e r r o r  is 

af a f  'Stability implies - < 0. If - < 0 , the analogous concept is rela-  
tive stability. 55 a Y  aY 
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6. 2 The Computer Program 

The computer program consists of the ten subroutines listed 

below: 

1. 
2. 

3.  

4. 
5. 
6. 
7. 
8.  
9. 

10. 

Second- level controller 
Quasilinearization 

Derivative evaluation, f b k J  t) (E a Y  >” 
Hamming forward integration 
Derivative evaluation, i 
Control function calculation 
Matrix inversion 
Calculate subsystem Hamiltonian and write results 
Calculate total Hamiltonian and spatial truncation e r r o r s  
Plot results 

The general interconnection of these subroutines is indicated in 

Figures 6. 1 and 6. 2.  

presence of the corresponding subroutines numbered above. 

The numbers inside certain boxes indicate the 

Two additional subroutines corresponding to 4 and 5 for a 

Hamming forward-backward integration were required for the 

boundary control problems. 

problem existed for subsystems having no control variable. 

these subsystems, the state variables were integrated forward and 

the adjoints variables backward. 

be suitably altered for such problems. 

In this case no two-point boundary value 

F o r  

The flowchart in Figure 6. 2 must 

6. 3 Minimum Effort, Fixed End, Linear Examples with 
Distributed Control 

The example to be discussed in this section was formulated 

in Section 5. 2 using both a nonfeasible and a Gauss-Seidel type 

second- level controller. 

values were used 

In this example the following numerical  
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SUBS = 
SUBS + 1 

START LJ 

U P D A T E  
COUPLING 

CONSTRAINTS 

DIMENSION 
READ DATA 
INITIALIZE 

WRITE DATA 

i-I-1 SUBS = 1 

I 7 - l  C A L L  QUASI 

SECOND-LEVEL CONTROLLER PROGRAM 

FIGURE 6. 1 
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DIMENSION 
INITIALIZE 
READ DATA 

EVALUATE fCyk, t), I EVALUATE fCyk, t), 

CALL HAMMING 

3 I 
I .' 

I 
I k=k+l 1 

I CALL HAMMING I 
INTEGRATION 
(40 eqs) 4,5.6 , I S E T U P Y  MATRIX I 
CALL MATRIX 
INVERSION 7 

i 

4 
CALCULATE a ' s  

CALL HAMMING 
INTEGRATION 
(9 eqs) 4.5.6 

h 
WRITE RESULTS CYI 

STORE RESULTS FOR 
SECOND LEVEL 

CALCULATE SPATIAL 
TRUNCATION 

PLOT RESULTS 

lo I 
RETURN TO I SECOND LEVEL 

SUBROUTINE FOR SUBSYSTEM OPTIMIZATION 
USING QUASILINEARIZATION 

FIGURE 6.  2 
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1 = 1  

cy , 0033 
(6. 7 )  

t l  = 5 

At  = 0 .1  

This value of cy corresponds to the thermal diffusity of steel in units 

of f t .  pe r  minute in the case w h e r e  the problem is thought to be one 

of heat conduction. 
11 

Brogan 

the results.  

2 

This problem is s imilar  to one treated by 

and w a s  s o  chosen in order  to check the reasonableness of 

As mentioned previously, no acceptable results w e r e  

obtained using the nonfeasible controller. 

this is discussed below. 
2 1 sidered and the initial guesses of p (t) and p (t) w e r e  taken as -0. 1. 1 2 

Suceeding values were determined using (5. 13).  

that p ,  and p., remained negative, their  values were compared with 

The pr imary reason for  

Two fourth-order subsystems w e r e  con- 

In order  to assure 
2 1 
I ,5 

i 
zero and the step s ize  (a l ,a2  in  (5.13)) w a s  halved each t ime p 

j 
became positive. An integration problem arose as portions of 
i approached zero since then the coefficients of B in (5. 11) in- 

'j j 
creased significantly. 

integration method, At would have to  be decreased prohibitively as 

indicated in Section 6. 1. 

in the time varying B 

prespecify the time increment for any integration technique using a 

fixed step s ize .  Perhaps variable step s i z e  integration methods could 

be used advantageously here, although it is felt that the t ime required 

would s t i l l  be prohibitive. 

In order t o  maintain stability of the Hamming 

Since the maximum magnitudes encountered 

matrix a r e  not known apriori ,  it  is difficult to 
j 

The above problem is not encountered with the Gauss-Seidel 

second-level controller s i n c e  the B.  matrix in (5. 15) is not t ime 
J 
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varying and A t ,  once determined, remains constant. 

of Section 5. 2 w a s  solved by this method considering both two and 

three fourth-order subsystems. 

The problem 

The spatial increment Ax is given 

1 AX = - D + l  (6. 8) 

where N 

In (6.8) D is the total dimension of the state vector. Hence for  two 

fourth-order subsystems, D = 8, Ax = 0. 11 1, and for  three such s u b -  

systems, D = 1 2  and Ax = 0. 077. The initial guesses required by 

the Gauss-Seidel controller were taken a s  

2 
1 

s = 50 

2 p1 = - 0 . 1  

for the two subsystem case and 

2 2  
1 2  

s = s  = 5 0  

p1 2 -  - p 2  2 = - 0 . 1  

fo r  the three subsystem case.  

The initial and final space distribution for the state variables 

were respectively the triangle and double humped curves shown in 

Figure 6 . 3 .  

sponding controls for the two subsystem case a r e  also shown on 

Figure 6 . 3 .  

in Figure 6. 4. 

constraints a r e  given in Figure 6.  5. 

Hamiltonian function a s  the iteration proceeded is shown in Figure 6.6. 

Fo r  this problem the constancy of the Hamiltonian served a s  a good 

Several intermediate state trajectories and the co r re -  

These same trajectories a r e  shown a s  functions of time 

The initial guesses and final values of the coupling 

The behavior of the 
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CONTROL AND RESPONSE F O R  MINIMUM E F F O R T  
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INITIAL AND FINAL VALUES O F  COUPLING 
CONSTRAINTS FOR TWO SUBSYSTEMS 

FIGURE 6 . 5  
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check on the programming accuracy. 

is constant at -543. 33 a f t e r  5 iterations, but that the subsystem 

Hamiltonians, H1 and H ,are not constant. 

since the Subsystem solutions a re  not optimal when taken separately. 

Note that the total Hamiltonian 

This is to b e  expected 2 

In order  to evaluate the speed of convergence of the Gauss- 

Seidel second-level controller, the following norms a r e  defined 

(6. 9) 
0 

1 2  t 
Ile211i = 1 '{l";-sp l i  + b 2 - P 1  I }  dt 

0 

where the absolute values a r e  on the coupling constraints (5. 1 6 )  after 

the i iteration. For the two subsystem problem, (6. 9) behaved 

as follows 

th 

Iteration (i) I le1 I I  lle2ll i 

1 .176x103 .320 l o 3  
2 . 2 1 3  x l o 2  . 2 5 3  x l o 2  
3 . 9 2  . 10 x 10 

4 . 3 1  x 10-1 . 37x10-1 

5 , 1 4 x  . 17x 

The subsystem optimization by quasilinearization converged 

rapidly whenever the time increment At w a s  sufficiently small  to 

insure integration accuracy. 

state trajectories were linear curves satisfying the boundary condi- 

tions and the initial guesses for the adjoints were zero. The quasi- 

linearization convergence ra te  w a s  monitored by the norm 

In each case the initial guesses for the 

(6. 10) 
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where j is the iteration number and i ranges over  the four state and 

four adjoint solution trajectories.  

f irst-level control, (6. 10) is evaluated as 

For a typical pass  through the 

Subsystem 1 Subsystem 2 

Iteration (j) llE I l j  I IE I I j  
1 . 7 8 6 x  l o 2  . 4 2 x  102  

3 . 9 1  . 1 3  

2 . 1 3 3 x  10  . 5 8 4 x  1 0  

The control functions and state variable response f rom the 

solution of this symmetric example using three subsystems are  

shown in Figure 6.  7. 

coupling constraints a r e  given in Figure 6. 8. 

vergence for  this case using (6. 9) is given by 

The corresponding initial guesses and f ina l  

The second-level con- 

Iteration (i) 

1 

2 

3 

? 

4 

5 

6 

7 

8 

9 

Direction 

forward 

backward 

forward 

backward 

forward 

backward 

forward 

backward 

forward 

I le1 I li I le2 I li 
. 1 6 1 x  10 . 2 9 1 x 1 0  . 3 3 7 x 1 0  

I le3 I Ii 
3 

3 . 601 x 10 . 1 6 0 x l O  

. 7 0 4 x  10  . 7 5 2 x 1 0 2  

. 6 2 2 x  10  . 187 x 10  

. 7 5 5  x 10 . 8 0 8 x  10  

. 582 . 2 3 9  

. 7 1 1  . 857 

. 676 x 10-1 

. 1 3 2  

. 114 

It is interesting to note that the f i r s t  and third subsystems converge 

monotonically while the second does not. However, the second sub- 

system does converge monotonically for  all forward passes  and all 
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CONTROL AND RESPONSE F O R  NONSYMMETRIC 
MINIMUM E F F O R T  E X A M P L E  

FIGURE 6. 9 

X 



1 u u  

backward passes taken separately. 

be s l o w e r  for  the three subsystem problem than for  the equivalent 

two subsystem problem due to the decrease in Ax. 

mentioned in Chapter 4. 

The convergence rate  is seen to 

This point was 

An example of a minimum effort, fixed end, linear problem 

was also solved using nonsymrnetric initial and final spatial distri-  

butions for two subsystems. These distributions, along with inter-  

mediate trajectories and corresponding controls, a r e  given in 

Figure 6 .  9. The initial guesses and final coupling constraints a r e  

shown in Figure 6 .  10. The second-level convergence for  this ex- 

ample w a s  similar to the symmetric two subsystem resul ts  given 

above. 

6. 4 Minimum Effort, Fixed End, Nonlinear - ~ _ _  Example with 
Distributed Control 

The nonlinear problem formulated in Section 5. 3 was solved 

using the numerical values in ( 6 .  7). 

the elements of the matrix f 

variables which a r e  of such a magnitude a s  to require a considerable 

reduction in At to preserve the integration accuracy. However, in 

this example, computation time can be saved by rescaling the state 

variables with a substitution 

Because of the nonlinearity, 

a r e  now proportional to the state 
Y 

w = a u  O < a < l  (6 .  11) 

By choosing a = . 01 , the value of At used for the previous examples 

was sufficiently small  to maintain integration accuracy. 

t ro l s  and state variable response for  this example a r e  shown in 

Figure 6 .  11, where the initial and final space distributions a r e  the 

symmetric ones used  i n  Section 6. 3. 

The con- 

In this figure, the results have 
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been scaled back up for comparison with previous examples. 

noteworthy is the fact that the control magnitude increases appre- 

ciably. 

Most 

The convergence of the second-level Gauss-Seidel controller 

in this example was comparable to the linear example of Section 6. 3 .  

This is not surprising since the mode of operation of the second- 

level controller is not affected by the nonlinearities even though the 

coupling constraint (5. 22 )  is slightly more complex than (5. 16). The 

convergence of the subsystems by quasilinearization a s  measured by 

(6. 10) for a typical pass through the f i rs t  level is given below: 

Subsystem 1 Subsystem 2 

Iteration (j) 

1 . 5 5  

2 . 25x10-1 

3 . a6x 

4 .19x 

5 

6 

. 53x 

IIEII j 
. 3 9  

. 53x10-1 

. 9 4 x  

. 3 1  x 

. 1ox10-2 

. 3 y X  

A s  expected, the subsystems converged somewhat slower than i n  

the corresponding linear case.  

6. 5 Minimum Effort. State Ineaualitv Constrained ExamDle 

The minimum effort problem described in Section 6. 3 was 

also solved for two subsystems with the state inequality constraint 

4 
1 u 5 c(t) (6. 1 2 )  

This problem was formulated in  Section 5. 4. 

taken a s  an ellipse 

The boundary c( t )  was 



1 U 4  

2 
(c-a) (t-b)2 

- 2  2 +-= 1 (6. 13) 
d e 

where 

a = d = 4 0  

b = 2 1  At 

e = 12 At 

This boundary is plotted in Figure 6. 1 2  along with the associated 

state and adjoint coupling constraints. 

pling constraint is not satisfied when the state variable is on (or  

near)  the boundary. 

used  to solve this problem except that  along the boundary, a gradient 

technique w a s  used to determine p (t) a s  discussed in Section 5. 4. 

Improvements in p 

taneously a t  each iteration. 

the results shown i n  Figure 6.  1 2 .  

taken as 0. 95. 

quasilinearization w a s  s imilar  to the corresponding linear example 

i n  Section 6. 3. 

A s  expected, the adjoint cou- 

The Gauss-Seidel second-level controller w a s  

2 
1 2 

1 and the coupling constraints were made simul- 

Eight iterations w e r e  required to obtain 

The step s ize  (a) in (5. 32)  w a s  

The convergence of the first-level controllers by 

The remaining two coupling constraints a r e  shown i n  Figure 

6 .  13  along with the control associated with the constrained state 

variable. It is this control alone as a function of X which acts i n  

subsystem one to drive u Of course X1 in 

turn depends upon p 

level by (5. 32) .  

were similar to those i n  Figure 6.  3 for  the unconstrained case.  

Figure 6.13 also shows the total Hamiltonian which is constant over 

both subarcs on which the state variable u is unconstrained, but 

changes drastically when the state is forced (nearly) onto the con- 

straint boundary. 

4 
1 

4 4 
1 

toward the boundary. 
2 
1 

which is determined iteratively at  the second 

The remaining control variables and state responses 

4 
1 
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6 .  6 Minimum Error  Plus Effort Example Using Boundary Control 

The boundary control problem posed in Section 5. 5 was 

solved using the cri terion functional given by (5. 71) for minimizing 

the e r r o r  f rom some desired trajectory along the entire (time) path 

plus the control effort. 

to be identically zero and the triangular initial distribution used 

previously was employed. 

of values of the weighting factor c and several  terminal times. The 

terminal states and the corresponding boundary control functions for  

these cases  a r e  given in  Figure 6 . 1 4 .  

to  be reduced by decreasing the weighting on the control effort (and 

thereby increasing the absolute magnitude of the control), or by in- 

creasing the final time. 

prominent in this example. Consider, for instance, a long thin rod 

being heated (or cooled) a t  one end only. 

desired temperature profile to be attained is by heat conduction along 

the length of the rod and this rate of conduction is limited by the dif-  

fusivity CY . 
creasing either the final time, the absolute magnitude of the control, 

o r  both. 

tude of C Y .  

The desired trajectory u (x, t )  was taken d 

Solutions were determined for  a variety 

The terminal e r r o r  is seen 

The latter effect seems to be the more 

The only way for a 

Thus the desired trajectory can only be reached by in- 

The relative effect of these measures  depends on the magni- 

Since the final states a r e  f ree  in this example, the final 

values of the boundary control a r e  always zero. Furthermore,  the 

large negative values of the control drive the state variable nearest  

the controlled boundary negative over a portion of the time interval. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 
FOR FURTHER STUDY 

The (approximate) solution of optimal control problems 

involving partial differential equations is studied by discretizing the 

space domain and considering the resultant set of ordinary differen- 

t ial  equations. This approach is certainly not new. However, 

ear l ier  efforts along this path have been hampered by the difficulties 

involved in solving the optimal control problem for the very large 

sets of interacting ordinary differential equations which a r i s e  as the 

discretization interval is decreased. This dissertation suggests the 

use of multilevel control techniques to overcome this computational 

difficulty. 

The major conclusion stemming from this research  is that 

the multilevel approach does appear feasible in solving the optimal 

control problem for certain classes of distributed parameter  systems; 

namely, linear and nonlinear parabolic o r  elliptic equations. The 

convergence properties of the second-level controller a r e  of para- 

mount importance in accomplishing this task. Of the three types of 

second-level controllers discussed here (feasible, nonfeasible, and 

Gauss-Seidel), the only one considered suitable in this application is 

the Gauss-Seidel controller. 

to have good convergence properties for this type of problem. 

particular, the systems of semidiscrete equations may become very 

large and the number of subsystems likewise. 

the performance of the Gauss-Seidel controller does not seem to be 

degraded by increasing the number of subsystems as long a s  the 

discretization interval (Ax) is not "too small. " The reason for the 

It is extremely simple and was found 

In 

By its  very nature, 
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good convergence properties observed for  this controller is largely 

the tridiagonal ( J a ~ o b i ~ ~ )  form of the A .  matrix. 
J 

This method of solution appears particularly attractive f o r  
1 1  obtaining a 

further study. 

used to obtain more  accurate results a t  the expense of considerable 

u s e  of computer time. 

which can be attained is the amount of fast-access computer memory 

available. 

permit the solution of problems not otherwise possible. 

analytical results a r e  very difficult to achieve for problems which 

a r e  (1) nonlinear, (2) t ime and/or  space varying, o r  (3) of space 

dimension greater  than one. However, all  of these complications 

can be handled i n  the framework of the multilevel solution described 

here. 

rough cut" for problems which w i l l  require extensive 

However, the multilevel form of solution can also be 

One restriction on the improved accuracy 

One significant advantage of this approach is that it may 

In particular, 

It should be noted that these optimistic results a r e  not uni- 
6 versa1 for multilevel control techniques. In particular, Bauman 

states that decomposition and multilevel control should be used only 

on systems having 

systems. 

ence with a number of fairly simple and low-order systems. 

felt that the satisfactory resul ts  reported in this dissertation for 

higher-order systems a r e  due mainly to the type of problem and i t s  

formulation a s  well a s  the type of second-level controller employed. 

I t  one o r  two coupling equations between sub- 
I t  This recommendation is based on computational experi- 

It is 

Several a r eas  stand out a s  f r u i t f u l  for further research.  In 

particular more work should be done towards obtaining necessary a s  

well as sufficient conditions for  the convergence of the Gauss-Seidel 

(and other) controllers. Other types of second-level controllers with 
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improved convergence properties would also be 

possibility s tems from various n-step methods 

worthwhile. One 

such a s  the conjugate 
27,  29  

gradient method. 

A s  pointed out ear l ier ,  the number of optimal control prob- 

lems which can be formulated f o r  distributed parameter systems is 

very large. A s  always, more computational experience is w a r -  

ranted. 

more  subsystems, (2) highly nonlinear problems, (3) problems hav- 

ing higher space dimension than one, (4) boundary control problems. 

Many interesting questions in the last  a rea  remain to be resolved. 

Of particular interest would be (1) la rger  problems having 

The steady state optimization problem resulting from dis- 

cretizing elliptic partial differential equations w a s  briefly treated 

here but no computational experience was obtained. 

could seemingly be directed toward both the theoretical and computa- 

tional aspects of this problem. 

Some effort 
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APPENDIX A 

AN EXAMPLE OF SUFFICIENT CONVERGENCE CONDITIONS 
FOR THE GAUSS-SEIDEL CONTROLLER 

where 

Consider the homogeneous linear differ entia1 e quation 

(A. 1) i = A Z  Z(0)  = Z 0 

T 2 = [UJ] 
24 

and A is a Jacobi type 

vergence cri terion given by K o l r n o g ~ r o v ~ ~  requires that (A. 1) 

satisfy a Lipschitz condition with respect to Z given by (2. 36). 

Lipschitz constant L of (2 .36)  can be determined a s  follows: 

matrix of constants. The sufficient con- 

The 

n a . .  (z: - z5, 
lf.(Zl) -f .(Z2)1 = c 1J 

1 1 j =1 

n 

j =1 
5 2 laij (z,”- zJ> I 

By the H6lder inequality36 (A. 3) is 

(A. 4) 

To find the value of L which is sufficiently large to satisfy (2. 36)  for  

all i , choose 

i = 1, ..., n (A. 6) 

A s  a specific example, consider the minimum effort prob- 

Using the formulation for  a lem discussed in Sections 5. 2 and 6 .  3. 

Gauss -Seide1 type second-level controller yields 
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L = k[ll 

= 4k + 0. 5 

(A. 7)  

For the two subsystem case k = 0. 268,  and for  the three subsystem 

case k = 0. 557. F o r  these two cases ,  L = 1. 572 and L = 2. 728 

respectively. 

here for convenience 

According to the sufficiency condition (2. 38) repeated 

L(tl-to) < 1 

o r  for two subsystems (taking t = 0) 
0 

1 t < ~ = 0. 635 
1 1.572 

and f o r  three subsystems 
1 

t <I = 0. 367 1 2.728 

(A. 8) 

(A. 9) 

However, these examples were solved using t 

Seidel controller converged very rapidly a s  shown in Section 6. 3, 

The two subsystem example was also solved using t = 10 with 

equally good results. 

= 5 and the Gauss- 1 

1 

Thus (as expected) the sufficient conditions a r e  seen to be 

quite conservative f o r  the Lipschitz constant determined above. 

What is really needed a r e  necessary conditions f o r  convergence. 

The determination of such conditions is a topic for future research.  



APPENDIX B 

CONSISTENCY AND CONVERGENCE OF THE SEMIDISCRETE 
APPROXIMATION OF A LINEAR PARABOLIC 

PARTIAL DIFFERENTIAL EQUATION 

Consider the l inear one-dimensional parabolic partial  dif- 

ferential  equation given by 

L [u(xJ t)] 4 u - a(x, t )  u - 2b(xJ t)  u + c(x, t )  u = d(x, t)  t xx X 

where (B. 1) 

a(xJ t)  > 0 (B. 2) 

A solution of (B. 1) is uniquely determined over the semi-infinite 

s t r i p  

R : [ O S x 5 L ; t ?  0 1 (B. 3 )  

by specifying appropriate initial and boundary conditions; say 

Define a grid on the x domain by 

Rh:[x = jh, j = 0,. . J + 11 (B. 5) 
j 

where 7 

and let 

d .=  d(x. , t)  
J J 
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1 2 1  

Using the semidiscrete approximation defined by 

1 
u (x t )  " - 2h (v j+ l -  .j-1) x j '  

XX J J j - 1  
t 

(B. 6) 

4 
du dv 

Ut(Xj '  t )  - d t  dt 
- L = A  

where v = v(x., t )  is the solution to the ordinary differential equa- 

tions obtained by substituting (B. 6)  into (B. l), yields for (B. 1) 
j J 

1 A = -  
h2 

where 

The initial and boundary conditions become 

v.(O) = f(x.1 O S j S J + l  
J J 

v o w  = go(t) t >  0 

v (t) = gl( t )  t >  0 
J+l 

3 2  
Using a natural extension of the definition given by Keller, 

the semidiscrete approximation (B. 7) is said to be consistent with 

(B. 1) i f  

lim [ ~ [ u ( x ,  t)l - ~ . [ u ( x ,  t ) ~ ]  = o 
h+O 

(B. 9 )  
J 

This condition insures that the equations (B. 7)  actually do approxi- 

mate the partial differential equation (B. 1). 

formula, the derivative t e rms  appearing in the difference in (B. 9)  

can be written 

By employing Taylor's 
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du, 
u ( x  t j '  t ) - $ = O  

(B. 10) 

where the bar  indicates that the derivatives a r e  evaluated a t  appro- 

priate intermediate values, and 7") and T ( ~ )  a r e  the truncation 

e r r o r s  for the respective approximations. Thus 

- Lj [u(xj,t)] = - a . ( t ) ~ ( ~ ) - 2  b.(t)T(l)=O(h 2 ) (B.11) 
J J 

Assuming that the derivatives of u and the coefficients a and b are 

bounded, the right hand side of (B. 11) goes to zero a s  h goes to zero 

and consistency is proved. 

Again extending a definition of Keller, the ordinary differ- 

ential equations (B. 7)  a r e  said to be convergent i f  their  solution 

satisfies 

(B.12) 

Convergence insures, a t  least for a sufficiently fine mesh, that the 

solution of (B. 7 )  is a "close" approximation to the solution of (B. 1). 

Before proving that (B. 7 )  is convergent, it is necessary to prove the 

following lemma. 

Lemma 

On every net R satisfying h 

2 Xa(x, t) t c(x, t )  2 0 

a(x, t )  - h /  b(x, t ) l z  0 

(B.13) 
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the solution v.(t) of the ordinary differential  equation (B. 7) and (B. 8) 

is bounded bv 
J 

where 

Proof 

Y 

V(t)  5 -ax[:, B] 

5 max [G,(F + fi ) e+Ic t ]  

A 
B(t)= max k, G(t)] 

c > o  (B. 1.4a) 

c < o  (B.14b) 

c = o  ( B . 1 4 ~ )  

(B. 15a) 

(B. 15b) 

( B . 1 5 ~ )  

(B. 15d) 

(B. 15e) 

(B. 15f) 

Rearranging (B. 7 )  gives 

By (B. 14), all coefficients in (B. 16) a r e  positive; s o  taking absolute 

values and employing (B15a) and (B. 15e) yields 

5 (2 X a . ) V ( t )  + D (B. 17)  
J 

If V occurs on the boundary, i. e . ,  a t  j = 0 o r  j = J + 1, (B. 15b) 

gives 

V( t )  5 G (B. 18) 
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Otherwise the maximum occurs at some interior point, say 

V(t) = IvmI (B. 19)  

m z 0 ,  J + l  where 

Then taking (B. 1 7 )  at the point j = m and using (B. 15a) again yields 

c.(t) V 5 D (B. 20) 
dt J 

Finally, employing (B. 15c), (B. 15d), (B. 15f), and (B. 18) gives 

E' V(t) 2 max c <  0 

c = o  
and the proof is complete. 

Returning to  the proof of consistency, define an e r r o r  at 

each mesh point as 

(B.21) 

Then from (B. 1) and (B. 7) 

(B. 2 2) 
A - L [ u ( x , ~ ) ]  = d . ( t ) -  d(x. , t )  = 0 

J J 
o r  

and by the linearity of operators 

Define the truncation e r r o r  7 .  a s  
J 

and substitute (B. 25)  and (B. 21)  into (B. 24) yielding 

(B.25) 

L. e.( t)  = 7 . W  (B. 26)  
J J  1 J  
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Thus the e r r o r  satisfies a set of ordinary differential equations of 

the form (B. 7)  i f  d.  is replaced by 7 . 
J j 

From (B. 4), (B. 81, and (B. 211, the e r r o r  vanishes initially 

Thus Ff the net spacing satisfies (B. 13) i and on the boundary. 

c > o  

(B.27) 

c = o  

Since for finite t , the coefficient above is bounded regard- 

less of net spacing, (B. 27)  implies (B. 12 )  provided the truncation 

factor approaches zero as the net is refined. However, f rom the 

proof of consistency 
2 

/ ~ ~ ( t ) l  = O(h ) 

and the convergence proof is complete. 


